Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

FAP is critical for ovarian cancer cell survival by sustaining NF-κB activation through recruitment of PRKDC in lipid rafts

Abstract

Fibroblast activation protein (FAP) is tumor-specific and plays an important role in tumorigenecity. However, agents against its enzymatic activity or extracellular presence were unsuccessful in the clinic for undefined reasons. Here we show that FAP expression is higher in advanced ovarian cancer and is only detected in invasive ovarian cancer cells. Silencing FAP induces apoptosis and FAP’s enzymatic activity is dispensable for cell survival. To elucidate the cause of apoptosis, we find that NF-κB activity is diminished when FAP is depleted and BIRC5 (survivin) acts downstream of FAP-NF-κB axis to promote cell survival. To uncover the link between FAP and NF-κB activation, we reveal that PRKDC (DNA-PK, DNA-dependent protein kinase) forms complex with FAP and is required for NF-κB activation and cell survival. Remarkably, FAP-PRKDC interaction occurs only in lipid rafts, and depleting FAP prevents lipid raft localization of PRKDC. Given the known ability of PRKDC to direct NF-κB activation, these results suggest that FAP recruits PRKDC in lipid rafts for NF-κB activation. FAP’s non-enzymatic role and functioning from lipid rafts for cell survival also offer an explanation on the failure of past FAP-targeted therapies. Finally, we demonstrate that EpCAM aptamer-delivered FAP siRNA impeded intraperitoneal xenograft development of ovary tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Higher FAP expression is associated with advanced ovarian cancer.
Fig. 2: Knockdown of FAP leads to apoptosis of invasive ovarian cancer cells.
Fig. 3: NF-κB signaling is impaired in ovarian cancer cells with FAP-knockdown.
Fig. 4: BIRC5 is downstream of FAP-NF-κB axis regulating ovarian cancer cell survival.
Fig. 5: PRKDC is critically involved in NF-κB activation in ovarian cancer cells.
Fig. 6: FAP-PRKDC interaction occurs in lipid rafts of ovarian cancer cells.
Fig. 7: EpCAM aptamer-FAP siRNA chimera suppresses intraperitoneal xenograft development.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article [and its supplementary information files].

References

  1. Society AC Cancer Facts & Figures 2019. Atlanta, GA: American Cancer Society; 2019.

  2. Chandra A, Pius C, Nabeel M, Nair M, Vishwanatha JK, Ahmad S, et al. Ovarian cancer: Current status and strategies for improving therapeutic outcomes. Cancer Med. 2019;8:7018–31.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pure E, Blomberg R. Pro-tumorigenic roles of fibroblast activation protein in cancer: back to the basics. Oncogene 2018;37:4343–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fitzgerald AA, Weiner LM. The role of fibroblast activation protein in health and malignancy. Cancer Metastasis Rev. 2020;39:783–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lo A, Li CP, Buza EL, Blomberg R, Govindaraju P, Avery D, et al. Fibroblast activation protein augments progression and metastasis of pancreatic ductal adenocarcinoma. JCI Insight. 2017;2:19.

    Article  Google Scholar 

  6. Wang H, Wu Q, Liu Z, Luo X, Fan Y, Liu Y, et al. Downregulation of FAP suppresses cell proliferation and metastasis through PTEN/PI3K/AKT and Ras-ERK signaling in oral squamous cell carcinoma. Cell Death Dis. 2014;5:e1155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Qi M, Fan S, Huang M, Pan J, Li Y, Miao Q, et al. Targeting FAPalpha-expressing hepatic stellate cells overcomes resistance to antiangiogenics in colorectal cancer liver metastasis models. J Clin Invest. 2022;132:e157399.

  8. Cheng JD, Valianou M, Canutescu AA, Jaffe EK, Lee HO, Wang H, et al. Abrogation of fibroblast activation protein enzymatic activity attenuates tumor growth. Mol Cancer Ther. 2005;4:351–60.

    Article  CAS  PubMed  Google Scholar 

  9. Huang Y, Simms AE, Mazur A, Wang S, Leon NR, Jones B, et al. Fibroblast activation protein-alpha promotes tumor growth and invasion of breast cancer cells through non-enzymatic functions. Clin Exp Metastasis. 2011;28:567–79.

    Article  CAS  PubMed  Google Scholar 

  10. Lv B, Xie F, Zhao P, Ma X, Jiang WG, Yu J, et al. Promotion of cellular growth and motility is independent of enzymatic activity of fibroblast activation protein-alpha. Cancer Genomics Proteom. 2016;13:201–8.

    CAS  Google Scholar 

  11. Song P, Pan Q, Sun Z, Zou L, Yang L. Fibroblast activation protein alpha: Comprehensive detection methods for drug target and tumor marker. Chem Biol Interact. 2022;354:109830.

    Article  CAS  PubMed  Google Scholar 

  12. Xin L, Gao J, Zheng Z, Chen Y, Lv S, Zhao Z, et al. Fibroblast activation protein-alpha as a target in the bench-to-bedside diagnosis and treatment of tumors: a narrative review. Front Oncol. 2021;11:648187.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Simkova A, Busek P, Sedo A, Konvalinka J. Molecular recognition of fibroblast activation protein for diagnostic and therapeutic applications. Biochim Biophys Acta Proteins Proteom. 2020;1868:140409.

    Article  CAS  PubMed  Google Scholar 

  14. Lee IK, Noguera-Ortega E, Xiao Z, Todd L, Scholler J, Song D, et al. Monitoring therapeutic response to anti-Fibroblast Activation Protein (FAP) CAR T cells using [18F]AlF-FAPI-74. Clin Cancer Res: Off J Am Assoc Cancer Res. 2022:CCR-22-1379. https://doi.org/10.1158/1078-0432.CCR-22-1379. Online ahead of print.

  15. Narra K, Mullins SR, Lee HO, Strzemkowski-Brun B, Magalong K, Christiansen VJ, et al. Phase II trial of single agent Val-boroPro (Talabostat) inhibiting Fibroblast Activation Protein in patients with metastatic colorectal cancer. Cancer Biol Ther. 2007;6:1691–9.

    Article  CAS  PubMed  Google Scholar 

  16. Eager RM, Cunningham CC, Senzer NN, Stephenson J Jr., Anthony SP, O’Day SJ, et al. Phase II assessment of talabostat and cisplatin in second-line stage IV melanoma. BMC cancer. 2009;9:263.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hofheinz RD, al-Batran SE, Hartmann F, Hartung G, Jager D, Renner C, et al. Stromal antigen targeting by a humanised monoclonal antibody: an early phase II trial of sibrotuzumab in patients with metastatic colorectal cancer. Onkologie 2003;26:44–8.

    CAS  PubMed  Google Scholar 

  18. Garin-Chesa P, Old LJ, Rettig WJ. Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Proc Natl Acad Sci USA. 1990;87:7235–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang MJ, Yu SY, Chu BQ, Dai W. [A statistical analysis and perspective of headache-related papers covered in 2011 PubMed]. Zhonghua Nei Ke Za Zhi. 2013;52:34–7.

    PubMed  Google Scholar 

  20. Wilson CH, Abbott CA. Expression profiling of dipeptidyl peptidase 8 and 9 in breast and ovarian carcinoma cell lines. Int J Oncol. 2012;41:919–32.

    Article  CAS  PubMed  Google Scholar 

  21. Kennedy A, Dong H, Chen D, Chen WT. Elevation of seprase expression and promotion of an invasive phenotype by collagenous matrices in ovarian tumor cells. Int J cancer. 2009;124:27–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen H, Yang WW, Wen QT, Xu L, Chen M. TGF-beta induces fibroblast activation protein expression; fibroblast activation protein expression increases the proliferation, adhesion, and migration of HO-8910PM [corrected]. Exp Mol Pathol. 2009;87:189–94.

    Article  CAS  PubMed  Google Scholar 

  23. Mhawech-Fauceglia P, Yan L, Sharifian M, Ren X, Liu S, Kim G, et al. Stromal expression of Fibroblast Activation Protein Alpha (FAP) predicts platinum resistance and shorter recurrence in patients with Epithelial Ovarian Cancer. Cancer Microenviron. 2015;8:23–31.

    Article  CAS  PubMed  Google Scholar 

  24. da Silva AC, Jammal MP, Etchebehere RM, Murta EFC, Nomelini RS. Role of alpha-smooth muscle actin and fibroblast activation protein alpha in ovarian neoplasms. Gynecol Obstet Invest. 2018;83:381–7.

    Article  PubMed  Google Scholar 

  25. Lai D, Ma L, Wang F. Fibroblast activation protein regulates tumor-associated fibroblasts and epithelial ovarian cancer cells. Int J Oncol. 2012;41:541–50.

    Article  CAS  PubMed  Google Scholar 

  26. Yang L, Ma L, Lai D. Over-expression of fibroblast activation protein alpha increases tumor growth in xenografts of ovarian cancer cells. Acta Biochim Biophys Sin. 2013;45:928–37.

    Article  PubMed  Google Scholar 

  27. Chen D, Kennedy A, Wang JY, Zeng W, Zhao Q, Pearl M, et al. Activation of EDTA-resistant gelatinases in malignant human tumors. Cancer Res. 2006;66:9977–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang MZ, Qiao YH, Nesland JM, Trope C, Kennedy A, Chen WT, et al. Expression of seprase in effusions from patients with epithelial ovarian carcinoma. Chin Med J. 2007;120:663–8.

    Article  CAS  PubMed  Google Scholar 

  29. Chen H, Wu X, Pan ZK, Huang S. Integrity of SOS1/EPS8/ABI1 tri-complex determines ovarian cancer metastasis. Cancer Res. 2010;70:9979–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang L, Fang D, Chen H, Lu Y, Dong Z, Ding HF, et al. Cyclin-dependent kinase 2 is an ideal target for ovary tumors with elevated cyclin E1 expression. Oncotarget 2015;6:20801–12.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fang D, Chen H, Zhu JY, Wang W, Teng Y, Ding HF, et al. Epithelial-mesenchymal transition of ovarian cancer cells is sustained by Rac1 through simultaneous activation of MEK1/2 and Src signaling pathways. Oncogene 2017;36:1546–58.

    Article  CAS  PubMed  Google Scholar 

  32. Brenner D, Blaser H, Mak TW. Regulation of tumour necrosis factor signalling: live or let die. Nat Rev Immunol. 2015;15:362–74.

    Article  CAS  PubMed  Google Scholar 

  33. LaCasse EC, Baird S, Korneluk RG, MacKenzie AE. The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene 1998;17:3247–59.

    Article  PubMed  Google Scholar 

  34. Wei H, Wang B, Miyagi M, She Y, Gopalan B, Huang DB, et al. PRMT5 dimethylates R30 of the p65 subunit to activate NF-kappaB. Proc Natl Acad Sci USA. 2013;110:13516–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Basu S, Rosenzweig KR, Youmell M, Price BD. The DNA-dependent protein kinase participates in the activation of NF kappa B following DNA damage. Biochem Biophys Res Commun. 1998;247:79–83.

    Article  CAS  PubMed  Google Scholar 

  36. Lu D, Huang J, Basu A. Protein kinase Cepsilon activates protein kinase B/Akt via DNA-PK to protect against tumor necrosis factor-alpha-induced cell death. The. J Biol Chem. 2006;281:22799–807.

    Article  CAS  PubMed  Google Scholar 

  37. Bozulic L, Surucu B, Hynx D, Hemmings BA. PKBalpha/Akt1 acts downstream of DNA-PK in the DNA double-strand break response and promotes survival. Mol Cell. 2008;30:203–13.

    Article  CAS  PubMed  Google Scholar 

  38. Feng J, Park J, Cron P, Hess D, Hemmings BA. Identification of a PKB/Akt hydrophobic motif Ser-473 kinase as DNA-dependent protein kinase. J Biol Chem. 2004;279:41189–96.

    Article  CAS  PubMed  Google Scholar 

  39. Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB. NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 1999;401:82–5.

    Article  CAS  PubMed  Google Scholar 

  40. Madrid LV, Mayo MW, Reuther JY, Baldwin AS Jr. Akt stimulates the transactivation potential of the RelA/p65 Subunit of NF-kappa B through utilization of the Ikappa B kinase and activation of the mitogen-activated protein kinase p38. J Biol Chem. 2001;276:18934–40.

    Article  CAS  PubMed  Google Scholar 

  41. Lucero H, Gae D, Taccioli GE. Novel localization of the DNA-PK complex in lipid rafts: a putative role in the signal transduction pathway of the ionizing radiation response. J Biol Chem. 2003;278:22136–43.

    Article  CAS  PubMed  Google Scholar 

  42. Knopf JD, Tholen S, Koczorowska MM, De Wever O, Biniossek ML, Schilling O. The stromal cell-surface protease fibroblast activation protein-alpha localizes to lipid rafts and is recruited to invadopodia. Biochim Biophys Acta. 2015;1853:2515–25. 10 Pt A

    Article  CAS  PubMed  Google Scholar 

  43. Day CA, Kenworthy AK. Functions of cholera toxin B-subunit as a raft cross-linker. Essays Biochem. 2015;57:135–45.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Xing Y, Gu Y, Xu LC, Siedlecki CA, Donahue HJ, You J. Effects of membrane cholesterol depletion and GPI-anchored protein reduction on osteoblastic mechanotransduction. J Cell Physiol. 2011;226:2350–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Alves ACS, Dias RA, Kagami LP, das Neves GM, Torres FC, Eifler-Lima VL, et al. Beyond the “Lock and Key” paradigm: targeting lipid rafts to induce the selective apoptosis of cancer cells. Curr Med Chem. 2018;25:2082–104.

    Article  PubMed  Google Scholar 

  46. Reichert JM, Valge-Archer VE. Development trends for monoclonal antibody cancer therapeutics. Nat Rev Drug Discov. 2007;6:349–56.

    Article  CAS  PubMed  Google Scholar 

  47. Cancer Genome Atlas Research N. Integrated genomic analyses of ovarian carcinoma. Nature 2011;474:609–15.

    Article  Google Scholar 

  48. Davidson B, Holth A, Hellesylt E, Tan TZ, Huang RY, Trope C, et al. The clinical role of epithelial-mesenchymal transition and stem cell markers in advanced-stage ovarian serous carcinoma effusions. Hum Pathol. 2015;46:1–8.

    Article  CAS  PubMed  Google Scholar 

  49. Takai M, Terai Y, Kawaguchi H, Ashihara K, Fujiwara S, Tanaka T, et al. The EMT (epithelial-mesenchymal-transition)-related protein expression indicates the metastatic status and prognosis in patients with ovarian cancer. J Ovarian Res. 2014;7:76.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jia J, Martin TA, Ye L, Meng L, Xia N, Jiang WG, et al. Fibroblast activation protein-alpha promotes the growth and migration of lung cancer cells via the PI3K and sonic hedgehog pathways. Int J Mol Med. 2018;41:275–83.

    CAS  PubMed  Google Scholar 

  51. Wang RF, Zhang LH, Shan LH, Sun WG, Chai CC, Wu HM, et al. Effects of the fibroblast activation protein on the invasion and migration of gastric cancer. Exp Mol Pathol. 2013;95:350–56.

    Article  CAS  PubMed  Google Scholar 

  52. Yang W, Han W, Ye S, Liu D, Wu J, Liu H, et al. Fibroblast activation protein-alpha promotes ovarian cancer cell proliferation and invasion via extracellular and intracellular signaling mechanisms. Exp Mol Pathol. 2013;95:105–10.

    Article  CAS  PubMed  Google Scholar 

  53. Hunter AM, LaCasse EC, Korneluk RG. The inhibitors of apoptosis (IAPs) as cancer targets. Apoptosis 2007;12:1543–68.

    Article  CAS  PubMed  Google Scholar 

  54. Liguang Z, Peishu L, Hongluan M, Hong J, Rong W, Wachtel MS, et al. Survivin expression in ovarian cancer. Exp Oncol. 2007;29:121–5.

    CAS  PubMed  Google Scholar 

  55. Chen L, Liang L, Yan X, Liu N, Gong L, Pan S, et al. Survivin status affects prognosis and chemosensitivity in epithelial ovarian cancer. Int J Gynecol Cancer: Off J Int Gynecol Cancer Soc 2013;23:256–63.

    Article  Google Scholar 

  56. Zhao G, Wang Q, Wu Z, Tian X, Yan H, Wang B, et al. Ovarian primary and metastatic tumors suppressed by survivin knockout or a novel survivin inhibitor. Mol Cancer Ther. 2019;18:2233–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhao G, Wang Q, Gu Q, Qiang W, Wei JJ, Dong P, et al. Lentiviral CRISPR/Cas9 nickase vector-mediated BIRC5 editing inhibits epithelial to mesenchymal transition in ovarian cancer cells. Oncotarget 2017;8:94666–80.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Scanlan MJ, Raj BK, Calvo B, Garin-Chesa P, Sanz-Moncasi MP, Healey JH, et al. Molecular cloning of fibroblast activation protein alpha, a member of the serine protease family selectively expressed in stromal fibroblasts of epithelial cancers. Proc Natl Acad Sci USA. 1994;91:5657–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Falck J, Coates J, Jackson SP. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 2005;434:605–11.

    Article  CAS  PubMed  Google Scholar 

  60. Hanna J, Hossain GS, Kocerha J. The potential for microRNA therapeutics and clinical research. Front Genet. 2019;10:478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rehmani H, Li Y, Li T, Padia R, Calbay O, Jin L, et al. Addiction to protein kinase Ci due to PRKCI gene amplification can be exploited for an aptamer-based targeted therapy in ovarian cancer. Signal Transduct Target Ther. 2020;5:140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hernandez L, Kim MK, Lyle LT, Bunch KP, House CD, Ning F, et al. Characterization of ovarian cancer cell lines as in vivo models for preclinical studies. Gynecologic Oncol. 2016;142:332–40.

    Article  Google Scholar 

Download references

Acknowledgements

This is part of doctoral work of Bin Li at University of Florida College of Medicine. This work was supported by funding from NIH CA222467 (SH) and CA256482 (SH/LJ).

Author information

Authors and Affiliations

Authors

Contributions

BL, ZD, OC, and TL performed research and analyzed results; BL, ZD, and YL performed bioinformatics analysis; LJ provided experimental assistance and discussed results; SH designed research, supervised this study, and wrote the manuscript.

Corresponding author

Correspondence to Shuang Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Ding, Z., Calbay, O. et al. FAP is critical for ovarian cancer cell survival by sustaining NF-κB activation through recruitment of PRKDC in lipid rafts. Cancer Gene Ther 30, 608–621 (2023). https://doi.org/10.1038/s41417-022-00575-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-022-00575-x

This article is cited by

Search

Quick links