Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Extended conjugated carbonyl-containing polymer as a negative electrode material for Na-ion batteries

Abstract

A novel vinyl polymer bearing an extended conjugated disodium dicarboxylate structure, specifically, the terphenyl side chain structure, which has a favorable electrochemical performance, has been synthesized and evaluated as an anode for sodium-ion batteries. The electrochemical performance was significantly improved over that of the vinyl polymer with disodium terephthalate. In particular, the discharge potential shifted by ~0.1 V to a lower potential at 0.28 V (vs. Na/Na+). Additionally, a specific capacity of 121 mAh g–1 at 10 mA g–1, which corresponds to an 88% theoretical capacity, was observed. Moreover, better rate performance was also achieved through the extended π-conjugated system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Scheme 3
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Amin K, Mao L, Wei Z. Recent progress in polymeric carbonyl-based electrode materials for lithium and sodium ion batteries. Macromol Rapid Commumn. 2019;40:1800565.

    Article  Google Scholar 

  2. Rajagopalan R, Tang Y, Jia C, Ji X, Wang H. Understanding the sodium storage mechanisms of organic electrodes in sodium ion batteries: issues and solutions. Energy Environ Sci. 2020;13:1568–92.

    Article  CAS  Google Scholar 

  3. Li M, Du Z, Khaleel MA, Belharouak I. Materials and engineering endeavors towards practical sodium-ion batteries. Energy Storage Mater. 2020;25:520–36.

    Article  Google Scholar 

  4. Park Y, Shin DS, Woo SH, Chi NS, Shin KH, Oh SM, et al. Sodium terephthalate as an organic anode material for sodium ion batteries. Adv Mater. 2012;24:3562–7.

    Article  CAS  Google Scholar 

  5. Zhao L, Zhao J, Hu Y-S, Li H, Zhou Z, Armand M, et al. Disodium terephthalate (Na2C8H4O4) as high performance anode material for low-cost room-temperature sodium-ion battery. Adv Energy Mater. 2012;2:962–5.

    Article  CAS  Google Scholar 

  6. Abouimrane A, Weng W, Eltayeb H, Cui Y, Niklas J, Poluektov O, et al. Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells. Energy Environ Sci. 2012;5:9632–8.

    Article  CAS  Google Scholar 

  7. Lakraychi AE, Dolhem F, Djedaïni-Pilard F, Thiam A, Fryret C, Becuwe M. Decreasing redox voltage of terephthalate-based electrode material for Li-ion battery using substituent effect. J Power Sources. 2017;359:198–204.

    Article  CAS  Google Scholar 

  8. Lakraychi AE, Dolhem F, Djedaïni-Pilard F, Becuwe M. Substituent effect on redox potential of terephthalate-based electrode materials for lithium batteries. Electrochem Commun. 2018;93:71–75.

    Article  CAS  Google Scholar 

  9. Wan F, Wu XL, Guo JZ, Li JY, Zhang JP, Niu L, et al. Nanoeffects promote the electrochemical properties of organic Na2C8H4O4 as anode material for sodium-ion batteries. Nano Energy. 2015;13:450–7.

    Article  CAS  Google Scholar 

  10. Padhy H, Chen Y, Lüder J, Gajella SR, Manzhos S, Balaya P. Charge and discharge processes and sodium storage in disodium pyridine-2,5-dicarboxylate anode–insights from experiments and theory. Adv Energy Mater. 2018;8:1701572.

    Article  Google Scholar 

  11. Zhao H, Wang J, Zheng Y, Li J, Han X, He G, et al. Organic thiocarboxylate electrodes for a room-temperature sodium-ion battery delivering an ultrahigh capacity. Angew Chem Int Ed. 2017;56:15334–8.

    Article  CAS  Google Scholar 

  12. Yamamoto R, Yabuuchi N, Miyasaka M. Synthesis of conjugated carbonyl containing polymer negative electrodes for sodium ion batteries. J Elecrochem Soc. 2018;165:A434–8.

    Article  CAS  Google Scholar 

  13. Yasuda T, Ogihara N. Reformation of organic dicarboxylate electrode materials for rechargeable batteries by molecular self-assembly. Chem Commun. 2014;50:11565–7.

    Article  CAS  Google Scholar 

  14. Fédèle L, Sauvage F, Bois J, Tarascon JM, Becuwe M. Lithium insertion/de-insertion properties of π-extended naphthyl-based dicarboxylate electrode synthesized by freeze-drying. J Elecrochem Soc. 2014;161:A46–52.

    Article  Google Scholar 

  15. Li C, Xue J, Ma J, Li J. Conjugated dicarboxylate with extended naphthyl skeleton as an advanced organic anode for potassium-ion battery. J Elecrochem Soc. 2019;166:A5221–5.

    Article  CAS  Google Scholar 

  16. Medabalmi V, Kuanr N, Ramanujam K. Sodium naphthalene dicarboxylate anode material for inorganic-organic hybrid rechargeable sodium-ion batteries. J Elecrochem Soc. 2018;165:A175–80.

    Article  CAS  Google Scholar 

  17. Cabañero JM Jr, Pimenta V, Cannon KC, Morris RE, Armstrong AR. Sodium naphthalene-2,6-dicarboxylate: an anode for sodium batteries. ChemSusChem. 2019;12:4522–8.

    Article  Google Scholar 

  18. Fédèle L, Sauvage F, Gottis S, Davoisne C, Salager E, Chotard JN, et al. 2D-layered lithium carboxylate based on biphenyl core as negative electrode for organic lithium-ion batteries. Chem Mater. 2017;29:546–54.

    Article  Google Scholar 

  19. Choi A, Kin YK, Kim TK, Kwon MS, Lee KT, Moon HR. 4,4′-Biphenyldicarboxylate sodium coordination compounds as anodes for Na-ion batteries. J Mater Chem A. 2014;2:14986–93.

    Article  CAS  Google Scholar 

  20. Walker W, Grugeon S, Vezin H, Laruelle S, Armand M, Wudl F, et al. Electrochemical characterization of lithium 4,4′-tolane-dicarboxylate for use as a negative electrode in Li-ion batteries. J Mater Chem. 2011;21:1615–20.

    Article  CAS  Google Scholar 

  21. Wang C, Xu Y, Fang Y, Zhou M, Liang L, Singh S, et al. Extended π-conjugated system for fast-charge and -discharge sodium-ion batteries. J Am Chem Soc. 2015;137:3124–30.

    Article  CAS  Google Scholar 

  22. Mihali VA, Renault S, Nyholm L, Brandell D. Benzenediacrylates as organic battery electrode materials: Na versus Li. RSC Adv. 2014;4:38004–11.

    Article  CAS  Google Scholar 

  23. Medabalmi V, Ramanujam K. Introduction of carbonyl groups: an approach to enhance electrochemical performance of conjugated dicarboxylate for Li-ion batteries. J Elecrochem Soc. 2017;164:A1720–5.

    Article  CAS  Google Scholar 

  24. Renault S, Brandell D, Gustafsson T, Edström K. Improving the electrochemical performance of organic Li-ion battery electrodes. Chem Commun. 2013;49:1945–7.

    Article  CAS  Google Scholar 

  25. Medabalmi V, Wang G, Ramani VK. Lithium salt of biphenyl tetracarboxylate as an anode material for Li/Na-ion batteries. Appl Surf Sci. 2017;418:9–16.

    Article  CAS  Google Scholar 

  26. Zhao RR, Cao YL, Ai XP, Yang HX. Reversible Li and Na storage behaviors of perylenetetracarboxylates as organic anodes for Li- and Na-ion batteries. J Electroanal Chem. 2013;688:93–7.

    Article  CAS  Google Scholar 

  27. Chen S, Zhang LY, Gao LC, Chen XF, Fan XH, Shen Z, et al. Influence of alkoxy tail length and unbalanced mesogenic core on phase behavior of mesogen-jacketed liquid crystalline polymers. J Polym Sci Part A Polym Chem. 2009;47:505–14.

    Article  CAS  Google Scholar 

  28. Zhang ZY, Wang Q, Hou PP, Shen Z, Fan XH. Effects of rigid cores and flexible tails on the phase behaviors of polynorbornene-based mesogen-jacketed liquid crystalline polymers. Polym Chem. 2015;6:7701–10.

    Article  CAS  Google Scholar 

  29. Nauroozi D, Pejic M, Schwartz PO, Wachtler M, Bäuerle P. Synthesis and solvent-free polymerisation of vinyl terephthalate for application as an anode material in organic batteries. RSC Adv. 2016;6:111350–7.

    Article  CAS  Google Scholar 

  30. Zhi J, Guan Y, Cui J, Liu A, Zhu Z, Wan X, et al. Synthesis and characterization of optically active helical vinyl polymers via free radical polymerization. J Polym Sci Part A Polym Chem. 2009;47:2408–21.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by JSPS KAKENHI Grant Number JP19K05676 and partially supported by the Research Institute for Science and Technology of Tokyo Denki University, Grant Number Q15E-02/Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Miyasaka.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugawara, K., Yabuuchi, N. & Miyasaka, M. Extended conjugated carbonyl-containing polymer as a negative electrode material for Na-ion batteries. Polym J 54, 1111–1118 (2022). https://doi.org/10.1038/s41428-022-00658-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00658-4

Search

Quick links