Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Human enterococcal isolates as reservoirs for macrolide-lincosamide-streptogramin and other resistance genes

Abstract

According to recent studies, the importance of MLS (macrolide-lincosamide-streptogramin) resistance phenotypes and genes in enterococci are reflected in the fact that they represent reservoirs of MLS resistance genes. The aim of this study was to investigate distribution of MLS resistance genes and phenotypes in community- and hospital-acquired enterococcal isolates and to determine their prevalence. The MLS resistance phenotypes (cMLSb, iMLSb, M/MSb, and L/LSa) were determined in 245 enterococcal isolates were characterized using the double-disc diffusion method. Specific primers were chosen from database sequences for detection of the MLS resistance genes (ermA, ermB, ermC, msrA/B, lnuA, lnuB, and lsaA) in 60 isolates of enterococci by end-point PCR. There was no linezolid-resistant enterococcal isolate. Only one vancomycin-resistant (0.6%) isolate was found and it occurred in a community-acquired enterococcal isolate. The most frequent MLS resistance phenotype among enterococcal isolates was cMLSb (79.7% community- and 67.9% hospital-acquired). The most common identified MLS resistance genes among enterococcal isolates were lsaA (52.9% community- and 33.3% hospital-acquired) and ermB (17.6% community- and 33.3% hospital-acquired). The most prevalent MLS gene combination was lnuA + lsaA (five enterococcal isolates). The ermB gene encoded cMLSb phenotype, and it was identified in only one isolate that displayed iMLSb resistance phenotype. Based on the results obtained, we can conclude that the most frequent MLS resistance phenotype among enterococcal isolates was cMLSb. Surprisingly, a vancomycin-resistant enterococcal isolate was identified in a community-acquired enterococcal isolate. This study shows that enterococci may represent a major reservoir of ermB, lsaA, and lnuA genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: .

Similar content being viewed by others

References

  1. Al-Talib H, Zuraina N, Kamarudin B, Yean CY. Genotypic variations of virulent genes in Enterococcus faecium and Enterococcus faecalis isolated from three hospitals in Malaysia. Adv Clin Exp Med. 2015;24:121–7. https://doi.org/10.17219/acem/38162.

    Article  PubMed  Google Scholar 

  2. Arias CA, Murray BE. The rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Microbiol. 2012;10:266–78.

    Article  CAS  Google Scholar 

  3. Cattoir V, Leclercq R. Twenty-five years of shared life with vancomycin-resistant enterococci: is it time to divorce?. J Antimicrob Chemother. 2013;68:731–42. https://doi.org/10.1093/jac/dks469.

    Article  CAS  PubMed  Google Scholar 

  4. Eliopoulos GM. Quinupristin‐dalfopristin and linezolid: evidence and opinion. Clin Infect Dis. 2003;36:473–81. https://doi.org/10.1086/367662.

    Article  PubMed  Google Scholar 

  5. Leclercq R. Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications. Clin Infect Dis. 2002;34:482–92. https://doi.org/10.1086/324626.

    Article  CAS  PubMed  Google Scholar 

  6. Felmingham D, Cantón R, Jenkins S. Regional trends in β-lactam, macrolide, fluoroquinolone and telithromycin resistance among Streptococcus pneumoniae isolates 2001-2004. J Infect. 2007;55:111–8. https://doi.org/10.1016/j.jinf.2007.04.006.

    Article  PubMed  Google Scholar 

  7. DiPersio L, DiPersio J, Frey K, Beach J. Prevalence of the erm(T) gene in clinical isolates of erythromycin-resistant group D streptococcus and enterococcus. Antimicrob Agents Chemother. 2008;52:1567–9. https://doi.org/10.1128/aac.01325-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sutcliffe J, Tait-Kamradt A, Wondrack L. Streptococcus pneumoniae and Streptococcus pyogenes resistant to macrolides but sensitive to clindamycin: a common resistance pattern mediated by an efflux system. Antimicrob Agents Chemother. 1996;40:1817–24.

    Article  CAS  Google Scholar 

  9. Singh KV, Malathum K, Murray BE. Disruption of an Enterococcus faecium species-specific gene, a homologue of acquired macrolide resistance genes of staphylococci, is associated with an increase in macrolide susceptibility. Antimicrob Agents Chemother. 2001;45:263–6. https://doi.org/10.1128/AAC.45.1.263-266.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Singh KV, Weinstock GM, Murray BE. An enterococcus faecalis ABC homologue (Lsa) is required for the resistance of this species to clindamycin and quinupristin-dalfopristin. Antimicrob Agents Chemother. 2002;46:1845–50. https://doi.org/10.1128/aac.46.6.1845-1850.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dina J, Malbruny B, Leclercq R. Nonsense mutations in the lsa-like gene in enterococcus faecalis isolates susceptible to lincosamides and streptogramins A. Antimicrob Agents Chemother. 2003;47:2307–9. https://doi.org/10.1128/aac.47.7.2307-2309.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Singh KV, Murray BE. Differences in the enterococcus faecalis lsa locus that influence susceptibility to quinupristin-dalfopristin and clindamycin. Antimicrob Agents Chemother. 2005;49:32–9. https://doi.org/10.1128/aac.49.1.32-39.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hollenbeck BL, Rice LB. Intrinsic and acquired resistance mechanisms in enterococcus. Virulence. 2012;3:421–569. https://doi.org/10.4161/viru.21282.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bozdogan B, Berrezouga L, Kuo MS, Yurek DA, Farley KA, Stockman BJ. et al. A new resistance gene, linB, conferring resistance to lincosamides by nucleotidylation in Enterococcus faecium HM1025. Antimicrob Agents Chemother. 1999;43:925–9.

    Article  CAS  Google Scholar 

  15. Facklam RR, Sahm DF. Enterococcus. In: Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH, eds. Manual of Clinical Microbiology. 6th ed. Washington DC: ASM Press; 1995. p. 308–14.

    Google Scholar 

  16. Hindler JA, Matuschek E, Cullen SK, Castanheira M, Giske CG, Kahlmeter G, et al. Clinical and Laboratory Standards Institute (CLSI). Procedure for Optimizing Disk Contents (Potencies) for Disk Diffusion Testing of Antimicrobial Agents Using Harmonized CLSI and EUCAST Criteria. 1st ed. CLSI document M23S (ISBN 978-1-68440-079-9). 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087 USA: Clinical and Laboratory Standards Institute. 2020.

    Google Scholar 

  17. Patel J, Sharp, Novak-Weekley S. Verification of antimicrobial susceptibility testing methods: a practical approach. Clin Microb Newslett. 2013;35:103–9.

    Article  Google Scholar 

  18. Rizzotti L, Simeoni D, Cocconcelli P, Gazzola S, Dellaglio F, Torriani S. Contribution of enterococci to the spread of antibiotic resistance in the production chain of swine meat commodities. J Food Prot. 2005;68:955–65.

    Article  CAS  Google Scholar 

  19. Matsuoka M, Jánosi L, Endou K, Nakajima Y. Cloning and sequences of inducible and constitutive macrolide resistance genes in Staphylococcus aureus that correspond to an ABC transporter. FEMS Microbiol Lett. 1999;181:91–100. https://doi.org/10.1111/j.1574-6968.1999.tb08830.x.

    Article  CAS  PubMed  Google Scholar 

  20. Lozano C, Aspiroz C, Sáenz Y, Ruiz-García M, Royo-García G, Gómez-Sanz E, et al. Genetic environment and location of the lnu(A) and lnu(B) genes in methicillin-resistant Staphylococcus aureus and other staphylococci of animal and human origin. J Antimicrob Chemother. 2012;67:2804–8. https://doi.org/10.1093/jac/dks320.

    Article  CAS  Google Scholar 

  21. Murray BE, Weinstock GM. Enterococci: new aspects of an old organism. Proc Assoc Am Physicians. 1999;111:328–34.

    Article  CAS  Google Scholar 

  22. Tannock GW, Cook G. Enterococci as members of the intestinal microflora of humans. In: Gilmore M, Clewell D, Courvalin P, Dunny G, Murray B, Rice L, eds. The Enterococci: Pathogenesis, Molecular Biology, and Antibiotic Resistance. Washington, DC, USA: ASM Press; 2002. p. 101–132.

    Google Scholar 

  23. El-Kersh TA, Marie MA, Al-Sheikh YA, Al-Agamy MH, Al Bloushy AA. Prevalence and risk factors of early fecal carriage of Enterococcus faecalis and Staphylococcus spp and their antimicrobial resistant patterns among healthy neonates born in a hospital setting in central Saudi Arabia. Saudi Med J. 2016;37:280–7. https://doi.org/10.15537/smj.2016.3.13871.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gawryszewska I, Żabicka D, Bojarska K, Malinowska K, Hryniewicz W, Sadowy E. Invasive enterococcal infections in Poland: the current epidemiological situation. Eur J Clin Microbiol Infect Dis 2016;35:847–56. https://doi.org/10.1007/s10096-016-2607-y. Epub 2016 Mar 5. PMID: 26946510; PMCID: PMC4840216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gawryszewska I, Żabicka D, Hryniewicz W, Sadowy E. Linezolid-resistant enterococci in Polish hospitals: species, clonality and determinants of linezolid resistance. Eur J Clin Microbiol Infect Dis 2017;36:1279–86. https://doi.org/10.1007/s10096-017-2934-7. Epub 2017 Feb 14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. López M, Cercenado E, Tenorio C, Ruiz-Larrea F, Torres C. Diversity of clones and genotypes among vancomycin-resistant clinical Enterococcus isolates recovered in a Spanish hospital. Micro Drug Resist. 2012;18:484–91. https://doi.org/10.1089/mdr.2011.0203. Epub 2012 Jun 13. PMID: 22694211

    Article  CAS  Google Scholar 

  27. Abamecha A, Wondafrash B, Abdissa A. Antimicrobial resistance profile of Enterococcus species isolated from intestinal tracts of hospitalized patients in Jimma, Ethiopia. BMC Res Notes. 2015;8:213. https://doi.org/10.1186/s13104-015-1200-2. PMID: 26036911; PMCID: PMC4467607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zalipour M, Esfahani BN, Havaei SA. Phenotypic and genotypic characterization of glycopeptide, aminoglycoside and macrolide resistance among clinical isolates of Enterococcus faecalis: a multicenter based study. BMC Res Notes. 2019;12:292. https://doi.org/10.1186/s13104-019-4339-4. PMID: 31133071; PMCID: PMC6537152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Roy S, Aung MS, Paul SK, Ahmed S, Haque N, Khan ER. et al. Drug resistance determinants in clinical isolates of enterococcus faecalis in Bangladesh: identification of oxazolidinone resistance gene optrA in ST59 and ST902 lineages. Microorganisms. 2020;8:1240 https://doi.org/10.3390/microorganisms8081240. Published 2020 Aug 14.

    Article  CAS  PubMed Central  Google Scholar 

  30. Taji A, Heidari H, Ebrahim-Saraie HS, Sarvari J, Motamedifar M. High prevalence of vancomycin and high-level gentamicin resistance in Enterococcus faecalis isolates. Acta Microbiol Immunol Hung. 2019;66:203–217. https://doi.org/10.1556/030.65.2018.046. Epub 2018 Nov 22. PMID: 30465449

    Article  CAS  PubMed  Google Scholar 

  31. Sattari-Maraji A, Jabalameli F, Node Farahani N, Beigverdi R, Emaneini M. Antimicrobial resistance pattern, virulence determinants and molecular analysis of Enterococcus faecium isolated from children infections in Iran. BMC Microbiol. 2019;19:156. https://doi.org/10.1186/s12866-019-1539-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Min YH, Jeong JH, Choi YJ, Yun HJ, Lee K, Shim M-J. et al. Heterogeneity of macrolide-lincosamide-streptogramin B resistance phenotypes in enterococci. Antimicrob Agents Chemother. 2003;47:3415–20. https://doi.org/10.1128/AAC.47.11.3415-3420.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Reyes J, Hidalgo M, Díaz L, Rincón S, Moreno J, Vanegas N, et al. Characterization of macrolide resistance in Gram-positive cocci from Colombian hospitals: a countrywide surveillance. Int J Infect Dis. 2007;11:329–36. https://doi.org/10.1016/j.ijid.2006.09.005.

    Article  CAS  PubMed  Google Scholar 

  34. Schmitz FJ, Sadurski R, Kray A, Boos M, Geisel R, Köhrer K. et al. Prevalence of macrolide-resistance genes in Staphylococcus aureus and Enterococcus faecium isolates from 24 European university hospitals. J Antimicrob Chemother. 2000;45:891–4.

    Article  CAS  Google Scholar 

  35. Jensen LB, Frimodt-Møller N, Aarestrup FM. Presence of erm gene classes in gram-positive bacteria of animal and human origin in Denmark. FEMS Microbiol Lett. 1999;170:151–8. https://doi.org/10.1111/j.1574-6968.1999.tb13368.x. PMID: 9919664

    Article  CAS  PubMed  Google Scholar 

  36. Montilla A, Zavala A, Cáceres Cáceres R, Cittadini R, Vay C, Gutkind G. et al. Genetic environment of the lnu(B) gene in a Streptococcus agalactiae clinical isolate. Antimicrob Agents Chemother. 2014;58:5636–7. https://doi.org/10.1128/AAC.02630-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li XS, Dong WC, Wang XM, Hu GZ, Wang YB, Cai BY, et al. Presence and genetic environment of pleuromutilin-lincosamide-streptogramin A resistance gene lsa(E) in enterococci of human and swine origin. J Antimicrob Chemother. 2014;69:1424–6. https://doi.org/10.1093/jac/dkt502.

    Article  CAS  PubMed  Google Scholar 

  38. Fluit AC, Visser MR, Schmitz FJ. Molecular detection of antimicrobial resistance. Clin Microbiol Rev. 2001;14:836–71. https://doi.org/10.1128/CMR.14.4.836-871.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Coutinho Vde L, Paiva RM, Reiter KC, de-Paris F, Barth AL, Machado AB. Distribution of erm genes and low prevalence of inducible resistance to clindamycin among staphylococci isolates. Braz J Infect Dis. 2010;14:564–8.

    PubMed  Google Scholar 

  40. Martineau F, Picard FJ, Lansac N, Ménard C, Roy PH, Ouellette M, et al. Correlation between the resistance genotype determined by multiplex PCR assays and the antibiotic susceptibility patterns of staphylococcus aureus and staphylococcus epidermidis. Antimicrob Agents Chemother. 2000;44:231–8.

    Article  CAS  Google Scholar 

  41. Abdollahi S, Ramazanzadeh R, Delami Khiabani Z, Kalantar E, Menbari S. Molecular detection of inducible clindamycin resistance among staphylococcal strains isolated from hospital patients. J Ardabil Univ Med Sci. 2013;13:59–68.

    Google Scholar 

  42. Park AK, Kim H, Jin HJ. Phylogenetic analysis of rRNA methyltransferases, Erm and KsgA, as related to antibiotic resistance. FEMS Microbiol Lett. 2010;309:151–62. https://doi.org/10.1111/j.1574-6968.2010.02031.x.

    Article  CAS  PubMed  Google Scholar 

  43. Srinivasan U, Miller B, Debusscher J, Marrs CF, Zhang L, Seo YS, et al. Identification of a novel keyhole phenotype in double-disk diffusion assays of clindamycin-resistant erythromycin-sensitive strains of streptococcus agalactiae. Micro Drug Resist. 2011;17:121–4. https://doi.org/10.1089/mdr.2010.0040.

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by the Ministry of Science and Technology of the Republic of Serbia under Grant Number III41010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dejan Baskić.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mišić, M., Kocić, B., Arsović, A. et al. Human enterococcal isolates as reservoirs for macrolide-lincosamide-streptogramin and other resistance genes. J Antibiot 75, 396–402 (2022). https://doi.org/10.1038/s41429-022-00532-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-022-00532-8

Search

Quick links