Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Paternal nicotine taking elicits heritable sex-specific phenotypes that are mediated by hippocampal Satb2

Abstract

Nicotine intake, whether through tobacco smoking or e-cigarettes, remains a global health concern. An emerging preclinical literature indicates that parental nicotine exposure produces behavioral, physiological, and molecular changes in subsequent generations. However, the heritable effects of voluntary parental nicotine taking are unknown. Here, we show increased acquisition of nicotine taking in male and female offspring of sires that self-administered nicotine. In contrast, self-administration of sucrose and cocaine were unaltered in male and female offspring suggesting that the intergenerational effects of paternal nicotine taking may be reinforcer specific. Further characterization revealed memory deficits and increased anxiety-like behaviors in drug-naive male, but not female, offspring of nicotine-experienced sires. Using an unbiased, genome-wide approach, we discovered that these phenotypes were associated with decreased expression of Satb2, a transcription factor known to play important roles in synaptic plasticity and memory formation, in the hippocampus of nicotine-sired male offspring. This effect was sex-specific as no changes in Satb2 expression were found in nicotine-sired female offspring. Finally, increasing Satb2 levels in the hippocampus prevented the escalation of nicotine intake and rescued the memory deficits associated with paternal nicotine taking in male offspring. Collectively, these findings indicate that paternal nicotine taking produces heritable sex-specific molecular changes that promote addiction-like phenotypes and memory impairments in male offspring.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nicotine self-administration by the F0 sires.
Fig. 2: Increased vulnerability to nicotine taking in the offspring of nicotine-experienced sires.
Fig. 3: Paternal nicotine taking is associated with sex-specific spatial memory impairments in the F1 generation.
Fig. 4: Satb2 is downregulated in the hippocampus of nicotine-sired male offspring.
Fig. 5: Increased Satb2 expression in the hippocampus of nicotine-sired male offspring rescues the behavioral deficits associated with paternal nicotine taking.

Similar content being viewed by others

References

  1. Prochaska JJ, Benowitz NL. Current advances in research in treatment and recovery: nicotine addiction. Sci Adv. 2019;5:eaay9763.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. SAMHSA. Results from the 2020 National Survey on Drug Use and Health: Summary of National Findings. In: Services USDoHaH (ed).2020.

  3. Gentzke AS, Creamer M, Cullen KA, Ambrose BK, Willis G, Jamal A, et al. Vital signs: tobacco product use among middle and high school students - United States, 2011-2018. MMWR Morb Mortal Wkly Rep. 2019;68:157–64.

    PubMed  PubMed Central  Google Scholar 

  4. Barua RS, Rigotti NA, Benowitz NL, Cummings KM, Jazayeri MA, Morris PB, et al. ACC expert consensus decision pathway on tobacco cessation treatment: a report of the American College of cardiology task force on clinical expert consensus documents. J Am Coll Cardiol. 2018;72:3332–65.

    PubMed  Google Scholar 

  5. Selya AS, Dierker LC, Rose JS, Hedeker D, Mermelstein RJ. Risk factors for adolescent smoking: parental smoking and the mediating role of nicotine dependence. Drug Alcohol Depend. 2012;124:311–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Rohde P, Kahler CW, Lewinsohn PM, Brown RA. Psychiatric disorders, familial factors, and cigarette smoking: II. Associations with progression to daily smoking. Nicotine Tob Res. 2004;6:119–32.

    PubMed  Google Scholar 

  7. Vuolo M, Staff J. Parent and child cigarette use: a longitudinal, multigenerational study. Pediatrics. 2013;132:e568–577.

    PubMed  PubMed Central  Google Scholar 

  8. Kardia SL, Pomerleau CS, Rozek LS, Marks JL. Association of parental smoking history with nicotine dependence, smoking rate, and psychological cofactors in adult smokers. Addictive Behav. 2003;28:1447–52.

    Google Scholar 

  9. Hu MC, Davies M, Kandel DB. Epidemiology and correlates of daily smoking and nicotine dependence among young adults in the United States. Am J public health. 2006;96:299–308.

    PubMed  PubMed Central  Google Scholar 

  10. Fergusson DM, Horwood LJ, Boden JM, Jenkin G. Childhood social disadvantage and smoking in adulthood: results of a 25-year longitudinal study. Addiction. 2007;102:475–82.

    PubMed  Google Scholar 

  11. Kandel DB, Griesler PC, Hu MC. Intergenerational patterns of smoking and nicotine dependence among US adolescents. Am J public health. 2015;105:e63–72.

    PubMed  PubMed Central  Google Scholar 

  12. Mays D, Gilman SE, Rende R, Luta G, Tercyak KP, Niaura RS. Parental smoking exposure and adolescent smoking trajectories. Pediatrics. 2014;133:983–91.

    PubMed  PubMed Central  Google Scholar 

  13. McCarthy DM, Morgan TJ Jr, Lowe SE, Williamson MJ, Spencer TJ, Biederman J, et al. Nicotine exposure of male mice produces behavioral impairment in multiple generations of descendants. PLoS Biol. 2018;16:e2006497.

    PubMed  PubMed Central  Google Scholar 

  14. Dai J, Wang Z, Xu W, Zhang M, Zhu Z, Zhao X, et al. Paternal nicotine exposure defines different behavior in subsequent generation via hyper-methylation of mmu-miR-15b. Sci Rep. 2017;7:7286.

    PubMed  PubMed Central  Google Scholar 

  15. Hawkey AB, White H, Pippen E, Greengrove E, Rezvani AH, Murphy SK, et al. Paternal nicotine exposure in rats produces long-lasting neurobehavioral effects in the offspring. Neurotoxicology Teratol. 2019;74:106808.

    CAS  Google Scholar 

  16. Goldberg LR, Zeid D, Kutlu MG, Cole RD, Lallai V, Sebastian A, et al. Paternal nicotine enhances fear memory, reduces nicotine administration, and alters hippocampal genetic and neural function in offspring. Addiction Biol. 2021;26:e12859.

    CAS  Google Scholar 

  17. Zhang M, Zhang D, Dai J, Cao Y, Xu W, He G, et al. Paternal nicotine exposure induces hyperactivity in next-generation via downregulating the expression of DAT. Toxicology. 2020;431:152367.

    CAS  PubMed  Google Scholar 

  18. Vallaster MP, Kukreja S, Bing XY, Ngolab J, Zhao-Shea R, Gardner PD et al. Paternal nicotine exposure alters hepatic xenobiotic metabolism in offspring. Elife. 2017;6:e24771.

    PubMed  PubMed Central  Google Scholar 

  19. McCarthy DM, Bhide PG. Heritable consequences of paternal nicotine exposure: from phenomena to mechanismsdagger. Biol Reprod. 2021;105:632–43.

    PubMed  PubMed Central  Google Scholar 

  20. Goldberg LR, Gould TJ. Multigenerational and transgenerational effects of paternal exposure to drugs of abuse on behavioral and neural function. Eur J Neurosci. 2019;50:2453–66.

    PubMed  Google Scholar 

  21. Corrigall WA, Coen KM. Nicotine maintains robust self-administration in rats on a limited-access schedule. Psychopharmacol (Berl). 1989;99:473–8.

    CAS  Google Scholar 

  22. Fowler CD, Kenny PJ. Intravenous nicotine self-administration and cue-induced reinstatement in mice: effects of nicotine dose, rate of drug infusion and prior instrumental training. Neuropharmacology. 2011;61:687–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hopkins TJ, Rupprecht LE, Hayes MR, Blendy JA, Schmidt HD. Galantamine, an acetylcholinesterase inhibitor and positive allosteric modulator of nicotinic acetylcholine receptors, attenuates nicotine taking and seeking in rats. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol. 2012;37:2310–21.

    CAS  Google Scholar 

  24. Lee AM, Arreola AC, Kimmey BA, Schmidt HD. Administration of the nicotinic acetylcholine receptor agonists ABT-089 and ABT-107 attenuates the reinstatement of nicotine-seeking behavior in rats. Behav Brain Res. 2014;274:168–75.

    CAS  PubMed  Google Scholar 

  25. Kimmey BA, Rupprecht LE, Hayes MR, Schmidt HD. Donepezil, an acetylcholinesterase inhibitor, attenuates nicotine self-administration and reinstatement of nicotine seeking in rats. Addiction Biol. 2014;19:539–51.

    CAS  Google Scholar 

  26. Ashare RL, Kimmey BA, Rupprecht LE, Bowers ME, Hayes MR, Schmidt HD. Repeated administration of an acetylcholinesterase inhibitor attenuates nicotine taking in rats and smoking behavior in human smokers. Transl psychiatry. 2017;7:e1072.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Maurer JJ, Sandager-Nielsen K, Schmidt HD. Attenuation of nicotine taking and seeking in rats by the stoichiometry-selective alpha4beta2 nicotinic acetylcholine receptor positive allosteric modulator NS9283. Psychopharmacol (Berl). 2017;234:475–84.

    CAS  Google Scholar 

  28. Vassoler FM, White SL, Schmidt HD, Sadri-Vakili G, Pierce RC. Epigenetic inheritance of a cocaine-resistance phenotype. Nat Neurosci. 2013;16:42–47.

    CAS  PubMed  Google Scholar 

  29. White SL, Vassoler FM, Schmidt HD, Pierce RC, Wimmer ME. Enhanced anxiety in the male offspring of sires that self-administered cocaine. Addiction Biol. 2016;21:802–10.

    CAS  Google Scholar 

  30. Wimmer ME, Briand LA, Fant B, Guercio LA, Arreola AC, Schmidt HD, et al. Paternal cocaine taking elicits epigenetic remodeling and memory deficits in male progeny. Mol Psychiatry. 2017;22:1641–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wimmer ME, Vassoler FM, White SL, Schmidt HD, Sidoli S, Han Y, et al. Impaired cocaine-induced behavioral plasticity in the male offspring of cocaine-experienced sires. Eur J Neurosci. 2019;49:1115–26.

    PubMed  PubMed Central  Google Scholar 

  32. Fant B, Wimmer ME, Swinford-Jackson SE, Maurer J, Van Nest D, Pierce RC. Preconception maternal cocaine self-administration increases the reinforcing efficacy of cocaine in male offspring. Psychopharmacol (Berl). 2019;236:3429–37.

    CAS  Google Scholar 

  33. Paxinos G, Watson C The rat brain in stereotaxic coordinates. Academic Press: New York, 1997.

  34. Jaitner C, Reddy C, Abentung A, Whittle N, Rieder D, Delekate A et al. Satb2 determines miRNA expression and long-term memory in the adult central nervous system. Elife. 2016;5:e17361.

  35. Fowler CD, Lu Q, Johnson PM, Marks MJ, Kenny PJ. Habenular alpha5 nicotinic receptor subunit signalling controls nicotine intake. Nature. 2011;471:597–601.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Matta SG, Balfour DJ, Benowitz NL, Boyd RT, Buccafusco JJ, Caggiula AR, et al. Guidelines on nicotine dose selection for in vivo research. Psychopharmacol (Berl). 2007;190:269–319.

    CAS  Google Scholar 

  37. Forwood SE, Winters BD, Bussey TJ. Hippocampal lesions that abolish spatial maze performance spare object recognition memory at delays of up to 48 h. Hippocampus. 2005;15:347–55.

    CAS  PubMed  Google Scholar 

  38. Mumby DG. Perspectives on object-recognition memory following hippocampal damage: lessons from studies in rats. Behav Brain Res. 2001;127:159–81.

    CAS  PubMed  Google Scholar 

  39. Li Y, You QL, Zhang SR, Huang WY, Zou WJ, Jie W et al. Satb2 ablation impairs hippocampus-based long-term spatial memory and short-term working memory and immediate early genes (IEGs)-mediated hippocampal synaptic plasticity. Mol Neurobiol. 2017. https://doi.org/10.1007/s12035-017-0531-5. Online ahead of print.

  40. McCarthy DM, Lowe SE, Morgan TJ, Cannon EN, Biederman J, Spencer TJ, et al. Transgenerational transmission of behavioral phenotypes produced by exposure of male mice to saccharin and nicotine. Sci Rep. 2020;10:11974.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. O’Dell LE, Khroyan TV. Rodent models of nicotine reward: what do they tell us about tobacco abuse in humans? Pharmacol, Biochem, Behav. 2009;91:481–8.

    PubMed  Google Scholar 

  42. Thomsen M, Caine SB. Intravenous drug self-administration in mice: practical considerations. Behav Genet. 2007;37:101–18.

    PubMed  Google Scholar 

  43. Tuesta LM, Fowler CD, Kenny PJ. Recent advances in understanding nicotinic receptor signaling mechanisms that regulate drug self-administration behavior. Biochem Pharm. 2011;82:984–95.

    CAS  PubMed  Google Scholar 

  44. Schmidt HD, Rupprecht LE, Addy NA. Neurobiological and neurophysiological mechanisms underlying nicotine seeking and smoking relapse. Mol Neuropsychiatry. 2019;4:169–89.

    PubMed  Google Scholar 

  45. Gill WD, Burgess KC, Vied C, Brown RW. Transgenerational evidence of increases in dopamine D2 receptor sensitivity in rodents: Impact on sensorimotor gating, the behavioral response to nicotine and BDNF. J Psychopharmacol. 2021;35:1188–203.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Clifford A, Lang L, Chen R. Effects of maternal cigarette smoking during pregnancy on cognitive parameters of children and young adults: a literature review. Neurotoxicology Teratol. 2012;34:560–70.

    CAS  Google Scholar 

  47. Ozmert EN, Yurdakok K, Soysal S, Kulak-Kayikci ME, Belgin E, Ozmert E, et al. Relationship between physical, environmental and sociodemographic factors and school performance in primary schoolchildren. J Trop Pediatr. 2005;51:25–32.

    PubMed  Google Scholar 

  48. Altink ME, Slaats-Willemse DI, Rommelse NN, Buschgens CJ, Fliers EA, Arias-Vasquez A, et al. Effects of maternal and paternal smoking on attentional control in children with and without ADHD. Eur Child Adolesc Psychiatry. 2009;18:465–75.

    PubMed  PubMed Central  Google Scholar 

  49. Julvez J, Ribas-Fito N, Torrent M, Forns M, Garcia-Esteban R, Sunyer J. Maternal smoking habits and cognitive development of children at age 4 years in a population-based birth cohort. Int J Epidemiol. 2007;36:825–32.

    PubMed  Google Scholar 

  50. Pembrey M, Northstone K, Gregory S, Miller LL, Golding J. Is the growth of the child of a smoking mother influenced by the father’s prenatal exposure to tobacco? A hypothesis generating longitudinal study. BMJ Open. 2014;4:e005030.

    PubMed  PubMed Central  Google Scholar 

  51. Biederman J, Fitzgerald M, Spencer TJ, Bhide PG, McCarthy DM, Woodworth KY, et al. Is paternal smoking at conception a risk for ADHD? a controlled study in youth with and without ADHD. J Atten Disord. 2020;24:1493–6.

    PubMed  Google Scholar 

  52. Oliveira AM, Hawk JD, Abel T, Havekes R. Post-training reversible inactivation of the hippocampus enhances novel object recognition memory. Learn Mem. 2010;17:155–60.

    PubMed  PubMed Central  Google Scholar 

  53. Ressler RL, Maren S. Synaptic encoding of fear memories in the amygdala. Curr Opin Neurobiol. 2019;54:54–59.

    CAS  PubMed  Google Scholar 

  54. Britanova O, Akopov S, Lukyanov S, Gruss P, Tarabykin V. Novel transcription factor Satb2 interacts with matrix attachment region DNA elements in a tissue-specific manner and demonstrates cell-type-dependent expression in the developing mouse CNS. Eur J Neurosci. 2005;21:658–68.

    PubMed  Google Scholar 

  55. Britanova O, de Juan Romero C, Cheung A, Kwan KY, Schwark M, Gyorgy A, et al. Satb2 is a postmitotic determinant for upper-layer neuron specification in the neocortex. Neuron. 2008;57:378–92.

    CAS  PubMed  Google Scholar 

  56. Gyorgy AB, Szemes M, de Juan Romero C, Tarabykin V, Agoston DV. SATB2 interacts with chromatin-remodeling molecules in differentiating cortical neurons. Eur J Neurosci. 2008;27:865–73.

    PubMed  Google Scholar 

  57. Zhou LQ, Wu J, Wang WT, Yu W, Zhao GN, Zhang P, et al. The AT-rich DNA-binding protein SATB2 promotes expression and physical association of human (G)gamma- and (A)gamma-globin genes. J Biol Chem. 2012;287:30641–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Srivatsa S, Parthasarathy S, Britanova O, Bormuth I, Donahoo AL, Ackerman SL, et al. Unc5C and DCC act downstream of Ctip2 and Satb2 and contribute to corpus callosum formation. Nat Commun. 2014;5:3708.

    CAS  PubMed  Google Scholar 

  59. Alcamo EA, Chirivella L, Dautzenberg M, Dobreva G, Farinas I, Grosschedl R, et al. Satb2 regulates callosal projection neuron identity in the developing cerebral cortex. Neuron. 2008;57:364–77.

    CAS  PubMed  Google Scholar 

  60. Zhang Q, Huang Y, Zhang L, Ding YQ, Song NN. Loss of Satb2 in the cortex and hippocampus leads to abnormal behaviors in mice. Front Mol Neurosci. 2019;12:33.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Cera I, Whitton L, Donohoe G, Morris DW, Dechant G, Apostolova G. Genes encoding SATB2-interacting proteins in adult cerebral cortex contribute to human cognitive ability. PLoS Genet. 2019;15:e1007890.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Kenney JW, Gould TJ. Modulation of hippocampus-dependent learning and synaptic plasticity by nicotine. Mol Neurobiol. 2008;38:101–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kutlu MG, Gould TJ. Effects of drugs of abuse on hippocampal plasticity and hippocampus-dependent learning and memory: contributions to development and maintenance of addiction. Learn Mem. 2016;23:515–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Feurle P, Abentung A, Cera I, Wahl N, Ablinger C, Bucher M, et al. SATB2-LEMD2 interaction links nuclear shape plasticity to regulation of cognition-related genes. EMBO J. 2021;40:e103701.

    CAS  PubMed  Google Scholar 

  65. Rando OJ. Daddy issues: paternal effects on phenotype. Cell. 2012;151:702–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Pichini S, Zuccaro P, Pacifici R. Drugs in semen. Clin Pharmacokinet. 1994;26:356–73.

    CAS  PubMed  Google Scholar 

  67. Abu-Awwad A, Arafat T, Schmitz OJ. Simultaneous determination of nicotine, cotinine, and nicotine N-oxide in human plasma, semen, and sperm by LC-Orbitrap MS. Anal Bioanal Chem. 2016;408:6473–81.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Adrian Arreola, Duncan Van Nest, Jordan Wolfheimer, and Riley Merkel for their technical contributions, and members of the Center for Interdisciplinary Research on Nicotine Addiction (CIRNA) at Penn for their input and support. We also thank the Next-Generation Sequencing Core (NGSC) at Penn and its Directors Dr. Jonathan Schug (Technical Director) and Dr. John Tobias (Technical Director for Bioinformatics).

Funding

This work was supported by the following grants from the National Institute on Drug Abuse (NIDA): R01 DA037897, R21 DA039393 and R21 DA045792 (HDS), R01 DA033641 (RCP), T32 DA028874 (RJH and MEW), T32 GM008076 (JF), and K01 DA039308 (MEW). This study was also supported by a grant from the Pennsylvania Department of Health (HDS).

Author information

Authors and Affiliations

Authors

Contributions

JJM, MEW, RCP, and HDS were responsible for the study concept and design. JJM, MEW, CAT, RJH, YZ, KR, JF, BAK, RCC and HDS performed experiments and analyzed the data. JJM, RCC and HDS prepared the figures. JJM, MEW, RCC, RCP and HDS drafted the manuscript. All authors reviewed content and approved the final version for publication.

Corresponding author

Correspondence to Heath D. Schmidt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurer, J.J., Wimmer, M.E., Turner, C.A. et al. Paternal nicotine taking elicits heritable sex-specific phenotypes that are mediated by hippocampal Satb2. Mol Psychiatry 27, 3864–3874 (2022). https://doi.org/10.1038/s41380-022-01622-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01622-7

This article is cited by

Search

Quick links