Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ciliary central apparatus structure reveals mechanisms of microtubule patterning

Abstract

A pair of extensively modified microtubules form the central apparatus (CA) of the axoneme of most motile cilia, where they regulate ciliary motility. The external surfaces of both CA microtubules are patterned asymmetrically with large protein complexes that repeat every 16 or 32 nm. The composition of these projections and the mechanisms that establish asymmetry and longitudinal periodicity are unknown. Here, by determining cryo-EM structures of the CA microtubules, we identify 48 different CA-associated proteins, which in turn reveal mechanisms for asymmetric and periodic protein binding to microtubules. We identify arc-MIPs, a novel class of microtubule inner protein, that bind laterally across protofilaments and remodel tubulin structure and lattice contacts. The binding mechanisms utilized by CA proteins may be generalizable to other microtubule-associated proteins. These structures establish a foundation to elucidate the contributions of individual CA proteins to ciliary motility and ciliopathies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cryo-EM structures of central apparatus C1 and C2 microtubules.
Fig. 2: Microtubule inner proteins of the central apparatus.
Fig. 3: PF16 spirals are determinants of projection asymmetry and periodicity.
Fig. 4: ASH proteins recognize different PF16:protofilament combinations.
Fig. 5: Atomic models of the CA projections.
Fig. 6: The C1b projection contains a cluster of kinase domains.

Similar content being viewed by others

Data availability

The composite cryo-EM maps of the C1 and C2 microtubules are deposited in the Electron Microscopy Data Bank (EMDB: https://www.ebi.ac.uk/pdbe/emdb/) with accession codes EMD-25381 and EMD-25361. The original unsharpened maps from cryoSPARC are associated with these depositions as additional files. The atomic models for the C1 and C2 microtubules are deposited in the Protein Data Bank (PDB: https://www.rcsb.org/) with accession codes 7SQC and 7SOM.

Code availability

Code used to obtain initial alignment parameters by EMAN1 and FREALIGN is available at https://github.com/rui--zhang/Microtubule.

References

  1. Mitchell, D. R. Reconstruction of the projection periodicity and surface architecture of the flagellar central pair complex. Cell Motil. Cytoskeleton 55, 188–199 (2003).

    Article  PubMed  Google Scholar 

  2. Ma, M. et al. Structure of the decorated ciliary doublet microtubule. Cell 179, 909–922.e12 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gui, M. et al. Structures of radial spokes and associated complexes important for ciliary motility. Nat. Struct. Mol. Biol. 28, 29–37 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Walton, T., Wu, H. & Brown, A. Structure of a microtubule-bound axonemal dynein. Nat. Commun. 12, 477–479 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Carbajal González, B. I. et al. Conserved structural motifs in the central pair complex of eukaryotic flagella. Cytoskeleton 70, 101–120 (2013).

    Article  PubMed  Google Scholar 

  6. Leung, M. R. et al. The multi-scale architecture of mammalian sperm flagella and implications for ciliary motility. EMBO J. 40, e107410 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Samsel, Z., Sekretarska, J., Osinka, A., Wloga, D. & Joachimiak, E. Central apparatus, the molecular kickstarter of ciliary and flagellar nanomachines. Int. J. Mol. Sci. 22, 3013 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Adams, G. M., Huang, B., Piperno, G. & Luck, D. J. Central-pair microtubular complex of Chlamydomonas flagella: polypeptide composition as revealed by analysis of mutants. J. Cell Biol. 91, 69–76 (1981).

    Article  CAS  PubMed  Google Scholar 

  9. Dutcher, S. K., Huang, B. & Luck, D. J. Genetic dissection of the central pair microtubules of the flagella of Chlamydomonas reinhardtii. J. Cell Biol. 98, 229–236 (1984).

    Article  CAS  PubMed  Google Scholar 

  10. Wargo, M. J., Dymek, E. E. & Smith, E. F. Calmodulin and PF6 are components of a complex that localizes to the C1 microtubule of the flagellar central apparatus. J. Cell Sci. 118, 4655–4665 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Zhao, L., Hou, Y., Picariello, T., Craige, B. & Witman, G. B. Proteome of the central apparatus of a ciliary axoneme. J. Cell Biol. 218, 2051–2070 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dai, D., Ichikawa, M., Peri, K., Rebinsky, R. & Huy Bui, K. Identification and mapping of central pair proteins by proteomic analysis. Biophys. Physicobiol. 17, 71–85 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Warr, J. R., McVittie, A., Randall, J. & Hopkins, J. M. Genetic control of flagellar structure in Chlamydomonas reinhardii. Genet. Res. 7, 335–351 (1966).

    Article  Google Scholar 

  14. Mitchell, D. R. & Sale, W. S. Characterization of a Chlamydomonas insertional mutant that disrupts flagellar central pair microtubule-associated structures. J. Cell Biol. 144, 293–304 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bustamante-Marin, X. M. et al. Identification of genetic variants in CFAP221 as a cause of primary ciliary dyskinesia. J. Hum. Genet. 65, 175–180 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Olbrich, H. et al. Recessive HYDIN mutations cause primary ciliary dyskinesia without randomization of left-right body asymmetry. Am. J. Hum. Genet. 91, 672–684 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cindrić, S. et al. SPEF2- and HYDIN-mutant cilia lack the central pair-associated protein SPEF2, aiding primary ciliary dyskinesia diagnostics. Am. J. Respir. Cell Mol. Biol. 62, 382–396 (2020).

    Article  PubMed  Google Scholar 

  18. Liu, C. et al. Deleterious variants in X-linked CFAP47 induce asthenoteratozoospermia and primary male infertility. Am. J. Hum. Genet. 108, 309–323 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dong, F. N. et al. Absence of CFAP69 causes male infertility due to multiple morphological abnormalities of the flagella in human and mouse. Am. J. Hum. Genet. 102, 636–648 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yanagisawa, H.-A. et al. FAP20 is an inner junction protein of doublet microtubules essential for both the planar asymmetrical waveform and stability of flagella in Chlamydomonas. Mol. Biol. Cell 25, 1472–1483 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Owa, M. et al. Inner lumen proteins stabilize doublet microtubules in cilia and flagella. Nat. Commun. 10, 1143 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang, X. et al. Cryo-EM structure of cortical microtubules from human parasite Toxoplasma gondii identifies their microtubule inner proteins. Nat. Commun. 12, 3065 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang, R., LaFrance, B. & Nogales, E. Separating the effects of nucleotide and EB binding on microtubule structure. Proc. Natl Acad. Sci. USA 115, E6191–E6200 (2018).

    PubMed  PubMed Central  Google Scholar 

  24. Buey, R. M. et al. Microtubule interactions with chemically diverse stabilizing agents: thermodynamics of binding to the paclitaxel site predicts cytotoxicity. Chem. Biol. 12, 1269–1279 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Ichikawa, M. et al. Tubulin lattice in cilia is in a stressed form regulated by microtubule inner proteins. Proc. Natl Acad. Sci. USA 116, 19930–19938 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gui, M. et al. De novo identification of mammalian ciliary motility proteins using cryo-EM. Cell 184, 5791–5806.e19 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Smith, E. F. & Lefebvre, P. A. PF16 encodes a protein with armadillo repeats and localizes to a single microtubule of the central apparatus in Chlamydomonas flagella. J. Cell Biol. 132, 359–370 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Wu, H. et al. Patients with severe asthenoteratospermia carrying SPAG6 or RSPH3 mutations have a positive pregnancy outcome following intracytoplasmic sperm injection. J. Assist. Reprod. Genet. 37, 829–840 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Watanabe, R. et al. The in situ structure of Parkinson’s disease-linked LRRK2. Cell 182, 1508–1518.e16 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ponting, C. P. A novel domain suggests a ciliary function for ASPM, a brain size determining gene. Bioinformatics 22, 1031–1035 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Zhao, L., Hou, Y., McNeill, N. A. & Witman, G. B. The unity and diversity of the ciliary central apparatus. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190164 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fu, G. et al. Structural organization of the C1a-e-c supercomplex within the ciliary central apparatus. J. Cell Biol. 113, 4236–4251 (2019).

    Article  Google Scholar 

  34. Brown, J. M., Dipetrillo, C. G., Smith, E. F. & Witman, G. B. A FAP46 mutant provides new insights into the function and assembly of the C1d complex of the ciliary central apparatus. J. Cell Sci. 125, 3904–3913 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lechtreck, K.-F. & Witman, G. B. Chlamydomonas reinhardtii hydin is a central pair protein required for flagellar motility. J. Cell Biol. 176, 473–482 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Oda, T., Yanagisawa, H., Kamiya, R. & Kikkawa, M. Cilia and flagella. A molecular ruler determines the repeat length in eukaryotic cilia and flagella. Science 346, 857–860 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Barber, C. F., Heuser, T., Carbajal González, B. I., Botchkarev, V. V. & Nicastro, D. Three-dimensional structure of the radial spokes reveals heterogeneity and interactions with dyneins in Chlamydomonas flagella. Mol. Biol. Cell 23, 111–120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Smith, E. F. & Lefebvre, P. A. PF20 gene product contains WD repeats and localizes to the intermicrotubule bridges in Chlamydomonas flagella. Mol. Biol. Cell 8, 455–467 (2017).

    Article  Google Scholar 

  39. Smith, E. F. & Yang, P. The radial spokes and central apparatus: mechano-chemical transducers that regulate flagellar motility. Cell Motil. Cytoskelet. 57, 8–17 (2004).

    Article  CAS  Google Scholar 

  40. Oda, T., Yanagisawa, H., Yagi, T. & Kikkawa, M. Mechanosignaling between central apparatus and radial spokes controls axonemal dynein activity. J. Cell Biol. 204, 807–819 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Grossman-Haham, I. et al. Structure of the radial spoke head and insights into its role in mechanoregulation of ciliary beating. Nat. Struct. Mol. Biol. 64, 1073–1079 (2020).

    Google Scholar 

  42. Wang, H. et al. The global phosphoproteome of Chlamydomonas reinhardtii reveals complex organellar phosphorylation in the flagella and thylakoid membrane. Mol. Cell Proteom. 13, 2337–2353 (2014).

    Article  CAS  Google Scholar 

  43. Mitchell, B. F., Pedersen, L. B., Feely, M., Rosenbaum, J. L. & Mitchell, D. R. ATP production in Chlamydomonas reinhardtii flagella by glycolytic enzymes. Mol. Biol. Cell 16, 4509–4518 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Goodenough, U. W. & Heuser, J. E. Substructure of inner dynein arms, radial spokes, and the central pair/projection complex of cilia and flagella. J. Cell Biol. 100, 2008–2018 (1985).

    Article  CAS  PubMed  Google Scholar 

  45. Kamiya, R. Extrusion and rotation of the central-pair microtubules in detergent-treated Chlamydomonas flagella. Prog. Clin. Biol. Res. 80, 169–173 (1982).

    CAS  PubMed  Google Scholar 

  46. Mitchell, D. R. & Nakatsugawa, M. Bend propagation drives central pair rotation in Chlamydomonas reinhardtii flagella. J. Cell Biol. 166, 709–715 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Omoto, C. K. et al. Rotation of the central pair microtubules in eukaryotic flagella. Mol. Biol. Cell 10, 1–4 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mitchell, D. R. Orientation of the central pair complex during flagellar bend formation in Chlamydomonas. Cell Motil. Cytoskelet. 56, 120–129 (2003).

    Article  Google Scholar 

  49. Wargo, M. J. & Smith, E. F. Asymmetry of the central apparatus defines the location of active microtubule sliding in Chlamydomonas flagella. Proc. Natl Acad. Sci. USA 100, 137–142 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Chen, D. T. N., Heymann, M., Fraden, S., Nicastro, D. & Dogic, Z. ATP consumption of eukaryotic flagella measured at a single-cell level. Biophys. J. 109, 2562–2573 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, H. & Mitchell, D. R. Cpc1, a Chlamydomonas central pair protein with an adenylate kinase domain. J. Cell Sci. 117, 4179–4188 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Hou, Y. et al. Chlamydomonas FAP70 is a component of the previously uncharacterized ciliary central apparatus projection C2a. J. Cell. Sci. 134, jcs258540 (2021).

  53. Schlauderer, G. J., Proba, K. & Schulz, G. E. Structure of a mutant adenylate kinase ligated with an ATP-analogue showing domain closure over ATP. J. Mol. Biol. 256, 223–227 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Sekulic, N., Shuvalova, L., Spangenberg, O., Konrad, M. & Lavie, A. Structural characterization of the closed conformation of mouse guanylate kinase. J. Biol. Chem. 277, 30236–30243 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Larsen, T. M., Wedekind, J. E., Rayment, I. & Reed, G. H. A carboxylate oxygen of the substrate bridges the magnesium ions at the active site of enolase: structure of the yeast enzyme complexed with the equilibrium mixture of 2-phosphoglycerate and phosphoenolpyruvate at 1.8 Å resolution. Biochemistry 35, 4349–4358 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Zhang, R. et al. High-throughput genotyping of green algal mutants reveals random distribution of mutagenic insertion sites and endonucleolytic cleavage of transforming DNA. Plant Cell 26, 1398–1409 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li, X. et al. An indexed, mapped mutant library enables reverse genetics studies of biological processes in Chlamydomonas reinhardtii. Plant Cell 28, 367–387 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bottier, M., Thomas, K. A., Dutcher, S. K. & Bayly, P. V. How does cilium length affect beating? Biophys. J. 116, 1292–1304 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lin, H., Kwan, A. L. & Dutcher, S. K. Synthesizing and salvaging NAD: lessons learned from Chlamydomonas reinhardtii. PLoS Genet. 6, e1001105 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Zhang, R., Alushin, G. M., Brown, A. & Nogales, E. Mechanistic origin of microtubule dynamic instability and its modulation by EB proteins. Cell 162, 849–859 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lander, G. C. et al. Appion: an integrated, database-driven pipeline to facilitate EM image processing. J. Struct. Biol. 166, 95–102 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7, e42166 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Ludtke, S. J., Baldwin, P. R. & Chiu, W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Grigorieff, N. FREALIGN: high-resolution refinement of single particle structures. J. Struct Biol. 157, 117–125 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Sánchez-García, R. et al. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun. Biol. 4, 874–878 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Casañal, A., Lohkamp, B. & Emsley, P. Current developments in Coot for macromolecular model building of electron cryo-microscopy and crystallographic data. Protein Sci. 29, 1069–1078 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pfab, J., Phan, N. M. & Si, D. DeepTracer for fast de novo cryo-EM protein structure modeling and special studies on CoV-related complexes. Proc. Natl Acad. Sci. USA 118, e2017525118 (2021).

    Article  CAS  PubMed  Google Scholar 

  71. Brown, A. et al. Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions. Acta Crystallogr. D Biol. Crystallogr. 71, 136–153 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9, 40 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Song, Y. et al. High-resolution comparative modeling with RosettaCM. Structure 21, 1735–1742 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L. & Ovchinnikov, S. ColabFold-Making protein folding accessible to all. Preprint at bioRxiv https://doi.org/10.1101/2021.08.15.456425 (2021).

  76. Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D Struct. Biol. 74, 531–544 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. The PyMOL Molecular Graphics System, Version 2.0 (Schrödinger, LLC).

  79. Rao, Q. et al. Structures of outer-arm dynein array on microtubule doublet reveal a motor coordination mechanism. Nat. Struct. Mol. Biol. 28, 799–810 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

    Article  CAS  PubMed  Google Scholar 

  81. Morin, A. et al. Collaboration gets the most out of software. Elife 2, e01456 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Cryo-EM data were collected at the Washington University in St. Louis Center for Cellular Imaging (WUCCI) and Case Western Research University (CWRU). We thank M. Rau and J. Fitzpatrick at WUCCI and W. Huang and K. Li at CWRU for microscopy support, J. Anderson for help with domain recognition and M. Bao for comments. M.G. is supported by a Charles A. King Trust Postdoctoral Research Fellowship. S.K.D. is supported by NIGMS grant R35GM131909 and R01HL128370. A.B. is supported by NIGMS grant 1R01GM141109, the Smith Family Foundation and the Pew Charitable Trusts. R.Z. is supported by NIGMS grant 1R01GM138854.

Author information

Authors and Affiliations

Authors

Contributions

X.W. prepared the sample for cryo-EM. X.W. and R.Z. collected and processed cryo-EM data. M.G. and A.B. built the atomic models. S.K.D. generated Chlamydomonas mutant strains. M.G., A.B. and R.Z. analyzed results and generated figures. R.Z. and A.B. supervised the research and wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Alan Brown or Rui Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Peer review information

Nature Structural & Molecular Biology thanks Antonina Roll-Mecak and Gaia Pigino for their contribution to the peer review of this work. Primary Handling Editors: Beth Moorefield and Sara Osman, in collaboration with the Nature Structural & Molecular Biology team. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Data processing.

a,b, Two representative micrographs of the total 9271 micrographs showing a mixture of CA microtubules (C1 and C2) and doublet microtubules (DMT), including loosely associated pairs of C1 and C2. c, Wedge masks used to reconstruct the ‘core’ of the C1 microtubule. Each of the seven wedge masks covering 2 protofilaments (PFs) is uniquely colored. The choice of where two 2-PF wedge masks overlap (necessary because of the odd number of protofilaments in the C1 or C2 microtubule) was arbitrary, for example, PF7 for C1 and PF2 for C2. To make the final composite map, we multiplied one of the overlapping reconstructions with a smaller wedge mask covering just a single protofilament (PF8 for C1 and PF1 for C2). d, Shell masks used to reconstruct the ‘outer shell’ of the C1 microtubule. The nominal resolution of each of subregion, defined by the masks, is given in the table. e, Wedge masks used to reconstruct the core of the C2 microtubule with nominal resolutions of each subregion. In panels c-e, the protofilaments are numbered according to33. f, Shape masks were used to improve the local resolution of the projections. As exemplified here for the C2a projection, three different shape masks were used that correspond to the microtubule-proximal, middle, and distal regions of the projection.

Extended Data Fig. 2 Protein identification strategies.

a, A flow diagram showing the strategies used to identify proteins in the C1 and C2 maps. If no matches were found in the lists of candidate proteins from mass spectrometry analysis11,12, the search was expanded to include the entire Chlamydomonas proteome. b, An example showing how DeepTracer70 was used to identify FAP213. c, Examples of density for proteins that are resolved at the side chain level (FAP388 and FAP147) and those that have regions that are only resolved at the domain level (FAP101, Hydin and PF16). Extended Data Table 1 lists the built regions of each identified protein and whether there is side chain information.

Extended Data Fig. 3 Locations of proteins within the central apparatus (CA).

a, Cross-section of the Chlamydomonas CA (as in Fig. 1b) annotated with the relative positions of the proteins identified within the cryo-EM maps. Proteins listed twice appear in more than one projection. b, The catalytic subunit of Protein phosphatase 1 (PP1c) occurs in two locations in the CA: bound to FAP81 in the C1e projection (left) and bound to PF16 in the C1d projection (right). c, Proteins identified within the CA and its projections by mass spectrometry11,12 that have not been identified in the cryo-EM maps.

Extended Data Fig. 4 Domain organization of central apparatus (CA) proteins.

CA proteins are divided into two groups based on their sequence length and listed by alphabetical order within these groups. Domains are annotated based on the experimentally determined structures and AlphaFold232 predictions. Globular domains that could not be confidently classified are indicated as white boxes. Abbreviations used in the key: ARM, armadillo repeat-containing domain; ASH, ASPM, SPD-2, Hydin domain; C2, a calcium-binding immunoglobulin-like domain; CH, calponin homology domain; HSP70, heat shock protein 70; Ig-like, immunoglobulin-like domain; IQ, IQ calmodulin-binding motif; MORN, Membrane Occupation and Recognition Nexus repeat; TPR, tetratricopeptide repeat-containing domain. Some of the ASH domains appear larger than others due to insertions. Most notably, Hydin has a guanylate kinase domain inserted in one of its ASH domains.

Extended Data Fig. 5 Protein-microtubule interactions.

a, FAP20 is a component of C2 microtubules and doublet microtubules. Left, FAP20 interacts with FAP65 and FAP147 on the surface of the C2 microtubule and makes only weak interactions with β-tubulin. Right, FAP20 links the A and B tubules of doublet microtubules at the inner junction (PDB 6U42)2 and interacts extensively with both α- and β-tubulin. b, Calponin homology (CH) domains prototypically interact with microtubules by binding the interface between four tubulin molecules in locations other than the seam, as exemplified by end-binding protein 3 (EB3; PDB 3JAR)61. Our structures show that CH domains are versatile and can interact with various microtubule lateral interfaces including the microtubule seam. The seam-binding ability of FAP178 is important for directing PF20 to the seam of the C2 microtubule.

Extended Data Fig. 6 Structural and functional analyses of Chlamydomonas mutants.

a, Visualization of the luminal surface of the C1 microtubule from wild-type Chlamydomonas (top) and a fap236 mutant (bottom). The fap236 mutant lacks SAXO density on protofilament 4 (red arrow). b, Visualization of the luminal surface of the C2 microtubule from wild-type Chlamydomonas (top) and a fap236 mutant (bottom). The fap236 mutant lacks SAXO density on protofilament 11 (red arrow). In panels a and b, map densities corresponding to α,β-tubulin and SAXO proteins are colored as indicated, the remaining densities including arc-MIPs are colored in light grey. c, Swimming velocities of CA MIP mutants. The numbers after the hyphen (for example, fap105-940) are the last three digits of the unique code for the CLiP mutant strain. Box plots showing the swimming velocities of each mutant strain, backcrossed with the wild-type CC-4402 strain, as judged by light microscopy. CC-4533 is the parental strain of the CLiP collection. Colors indicate biological replicates (different progeny from the backcross) for each strain. Number of cells analyzed: 188 (fap105-940), 36 (fap105-283), 94 (fap275-435), 90 (fap275-824), 67 (fap196-348), 108 (fap213-992), 84 (fap239-434), 94 (fap424-848), 540 (CC-4533), 170 (CC-4402). Data are presented as mean values + /- SD. The boxes indicate fifty percent. The minima and maxima used in the box plot is defined as Q1-1.5*IQR and Q3 + 1.5*IQR, respectively (Q1 is first quartile, Q3 is third quartile, IQR is Interquartile Range). Statistical analysis was performed by ANOVA on ranks.

Extended Data Fig. 7 Interactions between the K40 loop of α-tubulin and microtubule inner proteins (MIPs).

a, Interaction between the αK40 loop on C1 protofilament (PF) 8 and the arc-MIP FAP275. b, Interaction between the αK40 loop on C1 PF10 and the arc-MIP FAP275. c, Interaction between the αK40 loop on C2 PF5 and two MIPs (FAP388 and FAP196). The two MIPs form an inter-molecular β-sheet (magenta arrow). d, Interaction between the αK40 loop on C2 PF13 and the arc-MIP FAP388. e, Remodeling of the H1’-S2 loop (residues 47–64) of α-tubulin into an α-helix by the arc-MIP FAP225 at the lateral interface between C2 PF1 and PF2. f, The αK40 loop is disordered (and therefore invisible) in the cryo-EM density map of an in vitro assembled and undecorated microtubule (MT) (EMD-7974 and PDB 6DPV)23. In b and d, the red arrows point to MIPs occupying the taxol-binding pocket of β-tubulin. In panels a-f, the αK40 loops (residues 37 to 47) are colored orange (and drawn as a dashed line if invisible). Residue αK40 is colored red.

Extended Data Fig. 8 Details of the PF16 spiral.

a, Overview showing spirals of PF16 decorating the C1 microtubule. Each spiral is shown in a different color, as is FAP194 which caps the spirals. b, Molecular environment showing the capping of a PF16 spiral by FAP194. FAP194 alternates every 16 nm with PF16. c, Molecular environment at the beginning of the PF16 spiral. PF6 and FAP81 prevent the spiral from initiating earlier.

Extended Data Fig. 9 Analysis of microtubule curvature.

The interprotofilament angle is defined as the relative rotation (in conjugation with necessary translation) from a tubulin heterodimer on one protofilament to the neighboring tubulin heterodimer on a second protofilament. The red dashed line at 27.7° is the theoretical interprotofilament angle for a perfectly symmetric 13-protofilament microtubule (360° divided by 13). The seam locations for each microtubule are indicated with asterisks. Note for in vitro assembled GDP microtubule, the largest interprotofilament angle occurs at the seam as previously reported23.

Extended Data Fig. 10 Projection surfaces colored by electrostatic potential.

a, Three projections for which we have near-complete atomic models (C1a, C1d, and C1b) colored by surface electrostatic potential. The schematic on the left-hand side shows the angle from which the projection surfaces are viewed. b, Unmodeled surface loops (indicated with dashed lines) within the projections contain charged residues. The sequences of these loops are shown on the right. Within these sequences, negatively charged residues are colored red and positively charged residues are colored blue.

Supplementary information

Supplementary Information

Supplementary Tables 1–4 and references.

Reporting Summary

Peer Review File

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gui, M., Wang, X., Dutcher, S.K. et al. Ciliary central apparatus structure reveals mechanisms of microtubule patterning. Nat Struct Mol Biol 29, 483–492 (2022). https://doi.org/10.1038/s41594-022-00770-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-022-00770-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing