Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A low amino acid environment promotes cell macropinocytosis through the YY1-FGD6 axis in Ras-mutant pancreatic ductal adenocarcinoma

Abstract

Pancreatic ductal adenocarcinoma (PDAC), cancer with a high mortality rate and the highest rate of KRAS mutation, reportedly internalizes proteins via macropinocytosis to adapt to low amino acid levels in the tumor microenvironment. Here, we aimed to identify a key regulator of macropinocytosis for the survival of tumor cells in a low amino acid environment in PDAC. FYVE, RhoGEF, and PH domain-containing protein 6 (FGD6) were identified as key regulators of macropinocytosis. FGD6 promoted PDAC cell proliferation, macropinocytosis, and tumor growth both in vitro and in vivo. The macropinocytosis level was decreased with FGD6 knockdown in PDAC cell lines. Moreover, FGD6 promoted macropinocytosis by participating in the trans-Golgi network and enhancing the membrane localization of growth factor receptors, especially the TGF-beta receptor. TGF-beta enhanced macropinocytosis in PDAC cells. Additionally, YAP nuclear translocation induced by a low amino acid tumor environment initiated FGD6 expression by coactivation with YY1. Clinical data analysis based on TCGA and GEO datasets showed that FGD6 expression was upregulated in PDAC tissue, and high FGD6 expression was correlated with poor prognosis in patients with PDAC. In tumor tissue from KrasG12D/+/Trp53R172H/−/Pdx1-Cre (KPC) mice, FGD6 expression escalated during PDAC development. Our results uncover a previously unappreciated mechanism of macropinocytosis in PDAC. Strategies to target FGD6 and growth factors membrane localization might be developed for the treatment of PDAC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: FGD6 is a candidate for regulators of macropinocytosis and its expression is associated with a poor prognosis for pancreatic cancer patients.
Fig. 2: FGD6 promotes cell viability by modulating the macropinocytosis of PDAC cells.
Fig. 3: FGD6 promotes TGFBRII and EGFR membrane localization.
Fig. 4: FGD6 participates in the trans-Golgi network and promotes receptor location on the plasma membrane.
Fig. 5: A low amino acid environment inhibits the Hippo pathway and attenuates the increase in FGD6 expression and pancreatic cancer cell macropinocytosis.
Fig. 6: YY1 transcription coactivator with YAP initiates FGD6 expression.
Fig. 7: A schematic presentation illustrating the potential mechanism by which FGD6 participates in Ras-mutant PDAC cell macropinocytosis.

Similar content being viewed by others

References

  1. Commisso C, Davidson SM, Soydaner-Azeloglu RG, Parker SJ, Kamphorst JJ, Hackett S, et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature. 2013;497:633–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Swanson JA, Yoshida S. Macropinosomes as units of signal transduction. Philos Trans R Soc Lond B Biol Sci. 2019;374:20180157.

    Article  CAS  PubMed  Google Scholar 

  3. Lim JP, Gleeson PA. Macropinocytosis: an endocytic pathway for internalising large gulps. Immunol Cell Biol. 2011;89:836–43.

    Article  CAS  PubMed  Google Scholar 

  4. Donaldson JG. Macropinosome formation, maturation and membrane recycling: lessons from clathrin-independent endosomal membrane systems. Philos Trans R Soc Lond B Biol Sci. 2019;374:20180148.

    Article  CAS  PubMed  Google Scholar 

  5. Palm W, Thompson CB. Nutrient acquisition strategies of mammalian cells. Nature 2017;546:234–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. King B, Araki J, Palm W, Thompson CB. Yap/Taz promote the scavenging of extracellular nutrients through macropinocytosis. Genes Dev. 2020;34:1345–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Palm W, Araki J, King B, DeMatteo RG, Thompson CB. Critical role for PI3-kinase in regulating the use of proteins as an amino acid source. Proc Natl Acad Sci USA 2017;114:E8628–E36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Palm W, Park Y, Wright K, Pavlova NN, Tuveson DA, Thompson CB. The utilization of extracellular proteins as nutrients is suppressed by mTORC1. Cell 2015;162:259–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kamphorst JJ, Nofal M, Commisso C, Hackett SR, Lu W, Grabocka E, et al. Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein. Cancer Res. 2015;75:544–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30.

    Article  PubMed  Google Scholar 

  11. Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, et al. Oncogenic signaling pathways in the Cancer Genome Atlas. Cell 2018;173:321–37 e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wolfgang CL, Herman JM, Laheru DA, Klein AP, Erdek MA, Fishman EK, et al. Recent progress in pancreatic cancer. CA Cancer J Clin. 2013;63:318–48.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lee SW, Zhang Y, Jung M, Cruz N, Alas B, Commisso C. EGFR-Pak signaling selectively regulates glutamine deprivation-induced macropinocytosis. Dev Cell 2019;50:381–92 e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Davidson SM, Jonas O, Keibler MA, Hou HW, Luengo A, Mayers JR, et al. Direct evidence for cancer-cell-autonomous extracellular protein catabolism in pancreatic tumors. Nat Med. 2017;23:235–41.

    Article  CAS  PubMed  Google Scholar 

  15. Mossmann D, Park S, Hall MN. mTOR signalling and cellular metabolism are mutual determinants in cancer. Nat Rev Cancer 2018;18:744–57.

    Article  CAS  PubMed  Google Scholar 

  16. Nofal M, Zhang K, Han S, Rabinowitz JD. mTOR inhibition restores amino acid balance in cells dependent on catabolism of extracellular protein. Mol Cell 2017;67:936–46 e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Steenblock C, Heckel T, Czupalla C, Espirito Santo AI, Niehage C, Sztacho M, et al. The Cdc42 guanine nucleotide exchange factor FGD6 coordinates cell polarity and endosomal membrane recycling in osteoclasts. J Biol Chem. 2014;289:18347–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ferreira APA, Boucrot E. Mechanisms of carrier formation during clathrin-independent endocytosis. Trends Cell Biol 2018;28:188–200.

    Article  CAS  PubMed  Google Scholar 

  19. Moffitt RA, Marayati R, Flate EL, Volmar KE, Loeza SG, Hoadley KA, et al. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat Genet. 2015;47:1168–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Marques PE, Grinstein S, Freeman SA. SnapShot:Macropinocytosis. Cell 2017;169:766–e1.

    Article  CAS  PubMed  Google Scholar 

  21. Eitzen G, Smithers CC, Murray AG, Overduin M. Structure and function of the Fgd family of divergent FYVE domain proteins (1). Biochem Cell Biol. 2019;97:257–64.

    Article  CAS  PubMed  Google Scholar 

  22. Egorov MV, Capestrano M, Vorontsova OA, Di Pentima A, Egorova AV, Mariggio S, et al. Faciogenital dysplasia protein (FGD1) regulates export of cargo proteins from the golgi complex via Cdc42 activation. Mol Biol Cell 2009;20:2413–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Syed V. TGF-beta signaling in cancer. J Cell Biochem. 2016;117:1279–87.

    Article  CAS  PubMed  Google Scholar 

  24. Hong L, Li F, Tang C, Li L, Sun L, Li X, et al. Semaphorin 7A promotes endothelial to mesenchymal transition through ATF3 mediated TGF-beta2/Smad signaling. Cell Death Dis. 2020;11:695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hong L, Kenney SR, Phillips GK, Simpson D, Schroeder CE, Noth J, et al. Characterization of a Cdc42 protein inhibitor and its use as a molecular probe. J Biol Chem. 2013;288:8531–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Boncompain G, Divoux S, Gareil N, de Forges H, Lescure A, Latreche L, et al. Synchronization of secretory protein traffic in populations of cells. Nat Methods 2012;9:493–8.

    Article  CAS  PubMed  Google Scholar 

  27. Hassan Z, Schneeweis C, Wirth M, Veltkamp C, Dantes Z, Feuerecker B, et al. MTOR inhibitor-based combination therapies for pancreatic cancer. Br J Cancer 2018;118:366–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tu B, Yao J, Ferri-Borgogno S, Zhao J, Chen S, Wang Q, et al. YAP1 oncogene is a context-specific driver for pancreatic ductal adenocarcinoma. JCI Insight. 2019;4:e130811.

    Article  PubMed Central  Google Scholar 

  29. Hoxha S, Shepard A, Troutman S, Diao H, Doherty JR, Janiszewska M, et al. YAP-mediated recruitment of YY1 and EZH2 represses transcription of key cell-cycle regulators. Cancer Res. 2020;80:2512–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Koo JH, Guan KL. Interplay between YAP/TAZ and metabolism. Cell Metab. 2018;28:196–206.

    Article  CAS  PubMed  Google Scholar 

  31. Edwards DN, Ngwa VM, Wang S, Shiuan E, Brantley-Sieders DM, Kim LC, et al. The receptor tyrosine kinase EphA2 promotes glutamine metabolism in tumors by activating the transcriptional coactivators YAP and TAZ. Sci Signal. 2017;10:eaan4667.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yang CS, Stampouloglou E, Kingston NM, Zhang L, Monti S, Varelas X. Glutamine-utilizing transaminases are a metabolic vulnerability of TAZ/YAP-activated cancer cells. EMBO Rep. 2018;19:e43577.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Alarcon C, Zaromytidou AI, Xi Q, Gao S, Yu J, Fujisawa S, et al. Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-beta pathways. Cell 2009;139:757–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ferrigno O, Lallemand F, Verrecchia F, L’Hoste S, Camonis J, Atfi A, et al. Yes-associated protein (YAP65) interacts with Smad7 and potentiates its inhibitory activity against TGF-β/Smad signaling. Oncogene 2002;21:4879–84.

    Article  CAS  PubMed  Google Scholar 

  35. Luo K. Signaling cross talk between TGF-beta/Smad and other signaling pathways. Cold Spring Harb Perspect Biol. 2017;9:a022137.

  36. Rashidian J, Le Scolan E, Ji X, Zhu Q, Mulvihill MM, Nomura D, et al. Ski regulates Hippo and TAZ signaling to suppress breast cancer progression. Sci Signal 2015;8:ra14.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhang Y-F, Jiang S-H, Hu L-P, Huang P-Q, Wang X, Li J, et al. Targeting the tumor microenvironment for pancreatic ductal adenocarcinoma therapy. 2019. 2019;8:4.

  38. Nakazawa MS, Keith B, Simon MC. Oxygen availability and metabolic adaptations. Nat Rev Cancer 2016;16:663–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wiedemann C, Cockcroft S. Sticky fingers grab a lipid. Nature 1998;394:426–7.

    Article  CAS  PubMed  Google Scholar 

  40. Ye QH, Zhu WW, Zhang JB, Qin Y, Lu M, Lin GL, et al. GOLM1 modulates EGFR/RTK cell-surface recycling to drive hepatocellular carcinoma metastasis. Cancer Cell. 2016;30:444–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19:1423–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sharpe AH, Pauken KE. The diverse functions of the PD1 inhibitory pathway. Nat Rev Immunol. 2018;18:153–67.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang YL, Li Q, Yang XM, Fang F, Li J, Wang YH, et al. SPON2 promotes M1-like macrophage recruitment and inhibits hepatocellular carcinoma metastasis by distinct integrin-Rho GTPase-hippo pathways. Cancer Res. 2018;78:2305–17.

    Article  CAS  PubMed  Google Scholar 

  44. Commisso C, Flinn RJ, Bar-Sagi D. Determining the macropinocytic index of cells through a quantitative image-based assay. Nat Protoc. 2014;9:182–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee S-W, Alas B, Commisso C. Detection and quantification of macropinosomes in pancreatic tumors. In: Su GH, editor. Pancreatic Cancer: Methods and Protocols. New York, NY: Springer New York; 2019. p. 171–81.

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (81672837, to H.-Z. Nie; 81872242, to Y.-L. Zhang; 82002485, to Q.Li), the Natural Science Foundation of Shanghai (21ZR1461400, to H.-Z. Nie; 19ZR1452500 to X.-M. Yang), Shanghai Municipal Health Commission (202040104, to Y.-L. Zhang).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: H.Z.N., Y.L.Z., D.J.L., and Y.F.Z. Development of methodology: Y.S., L.L.Y., and D.X.L. Acquisition of data: Y.F.Z., Q.L., P.Q.H., T.S., S.H.J., L.P.H., X.M.Y., and X.L.Z. Analysis and interpretation of data: Y.F.Z., L.Z., and Q.Y. Writing review and/or revision of paper: Y.F.Z., H.Z.N., Y.L.Z., D.J.L., Z.G.Z., and S.H.J. Study supervision: H.Z.N. and Z.G.Z.

Corresponding authors

Correspondence to De-Jun Liu, Yan-Li Zhang or Hui-Zhen Nie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YF., Li, Q., Huang, PQ. et al. A low amino acid environment promotes cell macropinocytosis through the YY1-FGD6 axis in Ras-mutant pancreatic ductal adenocarcinoma. Oncogene 41, 1203–1215 (2022). https://doi.org/10.1038/s41388-021-02159-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-02159-9

This article is cited by

Search

Quick links