Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interactions between a polygenic risk score for plasma docosahexaenoic fatty acid concentration, eating behaviour, and body composition in children

Abstract

Background

The relationship between eating behaviour and current body weight has been described. However little is known about the effect of polyunsaturated fatty acids (PUFA) in this relationship. Genetic contribution to a certain condition is derived from a combination of small effects from many genetic variants, and polygenic risk scores (PRS) summarize these effects. A PRS based on a GWAS for plasma docosahexaenoic fatty acid (DHA) has been created, based on SNPs from 9 genes.

Objective

To analyze the interaction between the PRS for plasma DHA concentration, body composition and eating behaviour (using the Children Eating Behaviour Questionnaire) in childhood.

Subjects/Methods

We analyzed a subsample of children from the Maternal, Adversity, Vulnerability and Neurodevelopment (MAVAN) cohort with PRS and measurements of eating behaviour performed at 4 years of age (n = 210), 6 y (n = 177), and body fat determined by bioelectric impedance at 4 y and 6 y or by air displacement plethysmography and dual-energy X-ray absorptiometry at 8 y (n = 42 and n = 37). PRS was based on the GWAS from Lemaitre et al. 2011 (p threshold = p < 5*10-6), and a median split created low and high PRS groups (high PRS = higher DHA level).

Results

In ALSPAC children, we observed an association between PRS and plasma DHA concentration (β = 0.100, p < 0.01) and proportion (β = 0.107, p < 0.01). In MAVAN, there were interactions between PRS and body fat on pro-intake scores in childhood, in which low PRS and higher body fat were linked to altered behaviour. There were also interactions between PRS and pro-intake scores early in childhood on body fat later in childhood, suggesting that the genetic profile and eating behaviour influence the development of adiposity at later ages.

Conclusions

A lower PRS (lower plasma PUFA) can be a risk factor for developing higher body fat associated with non-adaptive eating behaviour in childhood; it is possible that the higher PRS (higher plasma PUFA) is a protective feature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Analysis flowchart.

Similar content being viewed by others

Code availability

Code is available upon request to the corresponding author.

References

  1. WHO. Report of the Commission on Ending Childhood Obesity: Geneva, Switzerland, 2016.

  2. Abarca-Gómez L, Abdeen ZA, Hamid ZA, Abu-Rmeileh NM, Acosta-Cazares B, Acuin C, et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet. 2017;390:2627–42.

    Article  Google Scholar 

  3. Albuquerque D, Nóbrega C, Manco L, Padez C. The contribution of genetics and environment to obesity. Br Med Bull. 2017;123:159–73.

    Article  PubMed  Google Scholar 

  4. Webber L, Hill C, Saxton J, Van Jaarsveld CH, Wardle J. Eating behaviour and weight in children. Int J Obes. 2009;33:21–8.

    Article  CAS  Google Scholar 

  5. Carnell S, Wardle J. Appetite and adiposity in children: evidence for a behavioral susceptibility theory of obesity. Am J Clin Nutr. 2008;88:22–9.

    Article  CAS  PubMed  Google Scholar 

  6. Sanchez U, Weisstaub G, Santos JL, Corvalan C, Uauy R. GOCS cohort: children’s eating behavior scores and BMI. Eur J Clin Nutr. 2016;70:925–8.

    Article  CAS  PubMed  Google Scholar 

  7. Jansen A, Theunissen N, Slechten K, Nederkoorn C, Boon B, Mulkens S, et al. Overweight children overeat after exposure to food cues. Eat Behav. 2003;4:197–209.

    Article  PubMed  Google Scholar 

  8. Rui L. Brain regulation of energy balance and body weight. Rev Endocr Metab Disord. 2013;14:387–407.

    Article  CAS  PubMed  Google Scholar 

  9. Sastry PS. Lipids of nervous tissue: composition and metabolism. Prog Lipid Res. 1985;24:69–176.

    Article  CAS  PubMed  Google Scholar 

  10. Uauy R, Mena P. Long-chain polyunsaturated fatty acids supplementation in preterm infants. Curr Opin Pediatr. 2015;27:165–71.

    Article  CAS  PubMed  Google Scholar 

  11. Uauy R, Hoffman DR, Peirano P, Birch DG, Birch EE. Essential fatty acids in visual and brain development. Lipids. 2001;36:885–95.

    Article  CAS  PubMed  Google Scholar 

  12. Schoonjans K, Staels B, Auwerx J. Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. J Lipid Res. 1996;37:907–25.

    Article  CAS  PubMed  Google Scholar 

  13. Clarke SD. The multi-dimensional regulation of gene expression by fatty acids: polyunsaturated fats as nutrient sensors. Curr Opin Lipidol. 2004;15:13–8.

    Article  CAS  PubMed  Google Scholar 

  14. Alsaleh A, Maniou Z, Lewis FJ, Hall WL, Sanders TA, O’Dell SD. ELOVL2 gene polymorphisms are associated with increases in plasma eicosapentaenoic and docosahexaenoic acid proportions after fish oil supplement. Genes Nutr. 2014;9:362.

    Article  PubMed  CAS  Google Scholar 

  15. Koletzko B, Lattka E, Zeilinger S, Illig T, Steer C. Genetic variants of the fatty acid desaturase gene cluster predict amounts of red blood cell docosahexaenoic and other polyunsaturated fatty acids in pregnant women: findings from the Avon Longitudinal Study of Parents and Children. Am J Clin Nutr. 2011;93:211–9.

    Article  CAS  PubMed  Google Scholar 

  16. Burrin DG, Marsmann HJ (eds). Biology of metabolism in growing animals. Vol. 3. Elsevier, Edinburgh & New York, 2005.

  17. Balanza-Martinez V, Fries GR, Colpo GD, Silveira PP, Portella AK, Tabares-Seisdedos R, et al. Therapeutic use of omega-3 fatty acids in bipolar disorder. Expert Rev Neurother. 2011;11:1029–47.

    Article  PubMed  CAS  Google Scholar 

  18. Muhlhausler BS, Gibson RA, Makrides M. The effect of maternal omega-3 long-chain polyunsaturated fatty acid (n-3 LCPUFA) supplementation during pregnancy and/or lactation on body fat mass in the offspring: a systematic review of animal studies. Prostaglandins Leukot Essent Fatty Acids. 2011;85:83–8.

    Article  CAS  PubMed  Google Scholar 

  19. Lemaitre RN, Tanaka T, Tang W, Manichaikul A, Foy M, Kabagambe EK, et al. Genetic loci associated with plasma phospholipid n-3 fatty acids: a meta-analysis of genome-wide association studies from the CHARGE Consortium. PLoS Genetics. 2011;7:e1002193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. O’Donnell KA, Gaudreau H, Colalillo S, Steiner M, Atkinson L, Moss E, et al. The maternal adversity, vulnerability and neurodevelopment project: theory and methodology. Can J Psychiatry. Revue Canadienne de Psychiatrie. 2014;59:497–508.

    Article  PubMed  Google Scholar 

  21. Golding Pembrey, Jones TeamTAS. ALSPAC–The Avon Longitudinal Study of Parents and Children. Paediatr Perinatal Epidemiol. 2001;15:74–87.

    Article  CAS  Google Scholar 

  22. Boyd A, Golding J, Macleod J, Lawlor DA, Fraser A, Henderson J, et al. Cohort Profile: the ‘children of the 90s’-the index offspring of the Avon Longitudinal Study of Parents and Children. Int J Epidemiol. 2013;42:111–27.

    Article  PubMed  Google Scholar 

  23. McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet. 2016;48:1279–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gaunt TR, Shihab HA, Hemani G, Min JL, Woodward G, Lyttleton O, et al. Systematic identification of genetic influences on methylation across the human life course. Genome Biol. 2016;17:61–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Chen LM, Yao N, Garg E, Zhu Y, Nguyen TTT, Pokhvisneva I, et al. PRS-on-Spark (PRSoS): a novel, efficient and flexible approach for generating polygenic risk scores. BMC Bioinform. 2018;19:295.

    Article  CAS  Google Scholar 

  26. Wray NR, Lee SH, Mehta D, Vinkhuyzen AA, Dudbridge F, Middeldorp CM. Research review: polygenic methods and their application to psychiatric traits. J Child Psychol Psychiatry Allied Discip. 2014;55:1068–87.

    Article  Google Scholar 

  27. Dudbridge F. Power and predictive accuracy of polygenic risk scores. PLoS Genet. 2013;9:e1003348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wardle J, Guthrie CA, Sanderson S, Rapoport L. Development of the children’s eating behaviour questionnaire. J Child Psychol Psychiatry Allied Discip. 2001;42:963–70.

    Article  CAS  Google Scholar 

  29. Miller SA, Taveras EM, Rifas-Shiman SL, Gillman MW. Association between television viewing and poor diet quality in young children. Int J Pediatr Obes: IJPO: Off J Int Assoc Study Obes. 2008;3:168–76.

    Google Scholar 

  30. Québec. OPDDD. Manuel de nutrition clinique, vol. 3ième édition. Quèbec, 2000.

  31. Katamay SW, Esslinger KA, Vigneault M, Johnston JL, Junkins BA, Robbins LG, et al. Eating well with Canada’s Food Guide (2007): development of the food intake pattern. Nutr Rev. 2007;65:155–66.

    Article  PubMed  Google Scholar 

  32. Villar J, Ismail LC, Victora CG, Ohuma EO, Bertino E, Altman DG, et al. International standards for newborn weight, length, and head circumference by gestational age and sex: the newborn cross-sectional study of the INTERGROWTH-21st Project. Lancet. 2014;384:857–68.

    Article  PubMed  Google Scholar 

  33. Group. WMGRS. WHO Child Growth Standards: Length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age: methods and development, World Health Organization: Geneva, 2006.

  34. Santos Ferreira DL, Hübel C, Herle M, Abdulkadir M, Loos RJF, Bryant-Waugh R, et al. Associations between blood metabolic profile at 7 years old and eating disorders in adolescence: findings from the Avon longitudinal study of parents and children. Metabolites. 2019;9:191.

    Article  PubMed Central  CAS  Google Scholar 

  35. Soininen P, Kangas AJ, Würtz P, Suna T, Ala-Korpela M. Quantitative serum nuclear magnetic resonance metabolomics in cardiovascular epidemiology and genetics. Circ: Cardiovasc Genet. 2015;8:192–206.

    CAS  Google Scholar 

  36. Rump P, Mensink RP, Kester AD, Hornstra G. Essential fatty acid composition of plasma phospholipids and birth weight: a study in term neonates. Am J Clin Nutr. 2001;73:797–806.

    Article  CAS  PubMed  Google Scholar 

  37. Grootendorst-van Mil NH, Tiemeier H, Steenweg-de Graaff J, Koletzko B, Demmelmair H, Jaddoe VWV, et al. Maternal plasma n-3 and n-6 polyunsaturated fatty acids during pregnancy and features of fetal health: fetal growth velocity, birth weight and duration of pregnancy. Clin Nutr. 2018;37:1367–74.

    Article  CAS  PubMed  Google Scholar 

  38. Vlaardingerbroek H, Hornstra G. Essential fatty acids in erythrocyte phospholipids during pregnancy and at delivery in mothers and their neonates: comparison with plasma phospholipids. Prostaglandins Leukot Essent Fatty Acids. 2004;71:363–74.

    Article  CAS  PubMed  Google Scholar 

  39. Brouwer-Brolsma EM, van de Rest O, Godschalk R, Zeegers MPA, Gielen M, de Groot RHM. Associations between maternal long-chain polyunsaturated fatty acid concentrations and child cognition at 7 years of age: the MEFAB birth cohort. Prostaglandins Leukot Essent Fatty Acids. 2017;126:92–7.

    Article  CAS  PubMed  Google Scholar 

  40. de Jong C, Kikkert HK, Seggers J, Boehm G, Decsi T, Hadders-Algra M. Neonatal fatty acid status and neurodevelopmental outcome at 9 years. Early Hum Dev. 2015;91:587–91.

    Article  PubMed  CAS  Google Scholar 

  41. Tay CW, Chin YS, Lee ST, Khouw I, Poh BK, Group SMS. Association of eating behavior with nutritional status and body composition in primary school-aged children. Asia Pac J Public Health. 2016;28:47S–58S. 5 Suppl

    Article  PubMed  Google Scholar 

  42. Passos DRD, Gigante DP, Maciel FV, Matijasevich A. Children’s eating behavior: comparison between normal and overweight children from a school in Pelotas, Rio Grande do Sul, Brazil. Revista Paulista de Pediatria. 2015;33:42–9.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lombardo YB, Chicco AG. Effects of dietary polyunsaturated n-3 fatty acids on dyslipidemia and insulin resistance in rodents and humans. A review. J Nutr Biochem. 2006;17:1–13.

    Article  CAS  PubMed  Google Scholar 

  44. Semple RK, Chatterjee VK, O’Rahilly S. PPAR gamma and human metabolic disease. J Clin Invest. 2006;116:581–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Simopoulos AP. Essential fatty acids in health and chronic disease. Am J Clin Nutr. 1999;70:560S–569S. 3 Suppl

    Article  CAS  PubMed  Google Scholar 

  46. Cifre M, Díaz-Rúa R, Varela-Calviño R, Reynés B, Pericás-Beltrán J, Palou A, et al. Human peripheral blood mononuclear cell in vitro system to test the efficacy of food bioactive compounds: effects of polyunsaturated fatty acids and their relation with BMI. Mol Nutr Food Res. 2017;61:1600353.

    Article  CAS  Google Scholar 

  47. Galmés S, Cifre M, Palou A, Oliver P, Serra F. A Genetic score of predisposition to low-grade inflammation associated with obesity may contribute to discern population at risk for metabolic syndrome. Nutrients. 2019;11:298.

    Article  PubMed Central  CAS  Google Scholar 

  48. Bondi CO, Taha AY, Tock JL, Totah NK, Cheon Y, Torres GE, et al. Adolescent behavior and dopamine availability are uniquely sensitive to dietary omega-3 fatty acid deficiency. Biol Psychiatry. 2014;75:38–46.

    Article  CAS  PubMed  Google Scholar 

  49. Ferreira CF, Bernardi JR, Krolow R, Arcego DM, Fries GR, de Aguiar BW, et al. Vulnerability to dietary n-3 polyunsaturated fatty acid deficiency after exposure to early stress in rats. Pharmacol Biochem Behav. 2013;107:11–9.

    Article  CAS  PubMed  Google Scholar 

  50. Mathieu G, Oualian C, Denis I, Lavialle M, Gisquet-Verrier P, Vancassel S. Dietary n-3 polyunsaturated fatty acid deprivation together with early maternal separation increases anxiety and vulnerability to stress in adult rats. Prostaglandins Leukot Essent Fatty Acids. 2011;85:129–36.

    Article  CAS  PubMed  Google Scholar 

  51. Frances H, Drai P, Smirnova M, Carrie I, Debray M, Bourre JM. Nutritional (n-3) polyunsaturated fatty acids influence the behavioral responses to positive events in mice. Neurosci Lett. 2000;285:223–7.

    Article  CAS  PubMed  Google Scholar 

  52. Suzuki H, Park SJ, Tamura M, Ando S. Effect of the long-term feeding of dietary lipids on the learning ability, fatty acid composition of brain stem phospholipids and synaptic membrane fluidity in adult mice: a comparison of sardine oil diet with palm oil diet. Mech Ageing Dev. 1998;101:119–28.

    Article  CAS  PubMed  Google Scholar 

  53. Chalon S. Omega-3 fatty acids and monoamine neurotransmission. Prostaglandins Leukot Essent Fatty Acids. 2006;75:259–69.

    Article  CAS  PubMed  Google Scholar 

  54. Kitajka K, Sinclair AJ, Weisinger RS, Weisinger HS, Mathai M, Jayasooriya AP, et al. Effects of dietary omega-3 polyunsaturated fatty acids on brain gene expression. Proc Natl Acad Sci USA. 2004;101:10931–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kitajka K, Puskás LG, Zvara A, Hackler L Jr, Barceló-Coblijn G, Yeo YK, et al. The role of n-3 polyunsaturated fatty acids in brain: modulation of rat brain gene expression by dietary n-3 fatty acids. Proc Natl Acad Sci USA. 2002;99:2619–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kuperstein F, Yakubov E, Dinerman P, Gil S, Eylam R, Salem N Jr, et al. Overexpression of dopamine receptor genes and their products in the postnatal rat brain following maternal n-3 fatty acid dietary deficiency. J Neurochem. 2005;95:1550–62.

  57. Carnell S, Wardle J. Measuring behavioural susceptibility to obesity: validation of the child eating behaviour questionnaire. Appetite. 2007;48:104–13.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the mothers and their children who participated in this study. We thank Irina Pokhvisneva and Sachin Patel for their technical support.

Funding

This work was supported by National Commission for Scientific and Technological Research (CONICYT-PCHA/Doctorado Nacional/2014-63140222) (AJ), Proyecto de Consolidación de la internacionalización de la investigación y postgrado de la Universidad de Chile UCH-1566 (AJ), Canadian Institutes of Health Research (CIHR) [PJT-166066, PPS] and the JPB Foundation through a grant to the JPB Research Network on Toxic Stress: A Project of the Center on the Developing Child at Harvard University. Dr. Levitan acknowledges support from the Cameron Holcombe Wilson Chair in Depression Studies, CAMH and University of Toronto.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to this work. Conceptualization PPS, AMJO, MJM; data curation AMJO; formal analysis AMJO; funding acquisition PPS, MJM, RDL; investigation PPS, RDL, RA; methodology PPS, RDL, RA, MJM; project administration PPS; resources MJM, PPS, RDL; supervision PPS, MLG, PC; validation AMJO; visualization AMJO, writing–original draft AMJO, PPS, MLG, PC; writing–review & editing AMJO, PPS, MLG, PC.

Corresponding author

Correspondence to Patricia Pelufo Silveira.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaramillo-Ospina, A., Casanello, P., Garmendia, M.L. et al. Interactions between a polygenic risk score for plasma docosahexaenoic fatty acid concentration, eating behaviour, and body composition in children. Int J Obes 46, 977–985 (2022). https://doi.org/10.1038/s41366-022-01067-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-022-01067-6

Search

Quick links