Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Primary hypothyroidism and quality of life

Abstract

In the 1970s, treatment with thyroid extract was superseded by levothyroxine, a synthetic l form of tetraiodothyronine. Since then, no major innovation has emerged for the treatment of hypothyroidism. The biochemical definition of subclinical hypothyroidism is a matter of debate. Indiscriminate screening for hypothyroidism has led to overdiagnosis and treatment initiation at lower serum levels of thyroid-stimulating hormone (TSH) than previously. Adverse health effects have been documented in individuals with hypothyroidism or hyperthyroidism, and these adverse effects can affect health-related quality of life (QOL). Levothyroxine substitution improves, but does not always normalize, QOL, especially for individuals with mild hypothyroidism. However, neither studies combining levothyroxine and liothyronine (the synthetic form of tri-iodothyronine) nor the use of desiccated thyroid extract have shown robust improvements in patient satisfaction. Future studies should focus not only on a better understanding of an individual’s TSH set point (the innate narrow physiological range of serum concentration of TSH in an individual, before the onset of hypothyroidism) and alternative thyroid hormone combinations and formulations, but also on autoimmunity and comorbidities unrelated to hypothyroidism as drivers of patient dissatisfaction. Attention to the long-term health consequences of hypothyroidism, beyond QOL, and the risks of overtreatment is imperative.

Key points

  • Epidemiological data suggest that the prevalence of (typically mild) hypothyroidism is increasing, partly owing to increased screening, which has led to a lower threshold for initiating treatment with levothyroxine.

  • Approximately 10–15% of individuals with hypothyroidism treated with levothyroxine experience persistent symptoms and dissatisfaction with therapy (that might or might not be due to their hypothyroidism), which can lead to overtreatment.

  • Health-related quality of life (QOL) is a complementary measure to morbidity and mortality; it should be measured with a validated thyroid-specific instrument for patient-related outcomes.

  • Poor QOL has been attributed to failure to achieve adequate T3 levels in tissues, polymorphisms in deiodinase and hormone transporter genes and/or symptoms unrelated to hypothyroidism such as autoimmune disease.

  • There is little evidence of durable QOL improvements with levothyroxine and liothyronine combination therapy, or from therapy with desiccated thyroid hormone, from a multitude of randomized controlled trials and meta-analyses.

  • Future research should investigate non-thyroidal causes of impaired QOL in patients with hypothyroidism as, at present, overtreatment for hypothyroidism constitutes a greater threat to health than undertreatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Roles of the DIO1 and DIO2 pathways in the TSH feedback mechanism during treatment with levothyroxine.
Fig. 2: Proportion of dissatisfaction expressed by patients with self-reported hypothyroidism by type of treatment for hypothyroidism.
Fig. 3: Changes in components of QOL before and after treatment of hypothyroidism.

Similar content being viewed by others

References

  1. McAninch, E. A. & Bianco, A. C. The history and future of treatment of hypothyroidism. Ann. Intern. Med. 164, 50–56 (2016).

    PubMed  PubMed Central  Google Scholar 

  2. Escobar-Morreale, H. F., Obregon, M. J., Escobar del Rey, F. & Morreale de Escobar, G. Replacement therapy for hypothyroidism with thyroxine alone does not ensure euthyroidism in all tissues, as studied in thyroidectomized rats. J. Clin. Invest. 96, 2828–2838 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Chaker, L., Bianco, A. C., Jonklaas, J. & Peeters, R. P. Hypothyroidism. Lancet 390, 1550–1562 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Okosieme, O. et al. Management of primary hypothyroidism: statement by the British Thyroid Association Executive Committee. Clin. Endocrinol. 84, 799–808 (2016).

    Google Scholar 

  5. Perros, P. European thyroid association guidelines on l-T4 + l-T3 combination for hypothyroidism: a weary step in the right direction. Eur. Thyroid J. 1, 51–54 (2012).

    PubMed  PubMed Central  Google Scholar 

  6. Taylor, P. N. et al. Falling threshold for treatment of borderline elevated thyrotropin levels-balancing benefits and risks: evidence from a large community-based study. JAMA Int. Med. 174, 32–39 (2014).

    CAS  Google Scholar 

  7. Toloza, F. J. K. et al. Patient experiences and perceptions associated with the use of desiccated thyroid extract. Medicina 56, 161 (2020).

    PubMed Central  Google Scholar 

  8. Mitchell, A. L., Hegedus, L., Zarkovic, M., Hickey, J. L. & Perros, P. Patient satisfaction and quality of life in hypothyroidism: an online survey by the British Thyroid Foundation. Clin. Endocrinol. 94, 513–520 (2021).

    CAS  Google Scholar 

  9. Negro, R. et al. Use of thyroid hormones in hypothyroid and euthyroid patients; the 2019 Italian Survey. Eur. Thyroid. J. 9, 25–31 (2020).

    CAS  PubMed  Google Scholar 

  10. Jonklaas, J., Tefera, E. & Shara, N. Short-term time trends in prescribing therapy for hypothyroidism: results of a survey of American Thyroid Association members. Front. Endocrinol. 10, 31 (2019).

    Google Scholar 

  11. la Cour, J. L. et al. Risk of over- and under- treatment with levothyroxine in primary care in Copenhagen, Denmark. Eur. J. Endocrinol. 185, 673–679 (2021).

    PubMed  Google Scholar 

  12. Lillevang-Johansen, M., Abrahamsen, B., Jorgensen, H. L., Brix, T. H. & Hegedus, L. Over- and under-treatment of hypothyroidism is associated with excess mortality: a register-based cohort study. Thyroid 28, 566–574 (2018).

    CAS  PubMed  Google Scholar 

  13. Perros, P., Nirantharakumar, K. & Hegedus, L. Recent evidence sets therapeutic targets for levothyroxine-treated patients with primary hypothyroidism based on risk of death. Eur. J. Endocrinol. 184, C1–C3 (2021).

    CAS  PubMed  Google Scholar 

  14. Thvilum, M. et al. Increased risk of dementia in hypothyroidism: a Danish nationwide register-based study. Clin. Endocrinol. 94, 1017–1024 (2021).

    CAS  Google Scholar 

  15. Folkestad, L., Brandt, F., Lillevang-Johansen, M., Heiberg Brix, T. & Hegedüs, L. Graves’ disease and toxic nodular goiter, aggravated by duration of hyperthyroidism, are associated with Alzheimer’s and vascular dementia: a registry-based long-term follow-up of two large cohorts. Thyroid 30, 672–680 (2020).

    CAS  PubMed  Google Scholar 

  16. Bianco, A. C. et al. Paradigms of dynamic control of thyroid hormone signaling. Endocr. Rev. 40, 1000–1047 (2019).

    PubMed  PubMed Central  Google Scholar 

  17. Evered, D. C., Ormston, B. J., Smith, P. A., Hall, R. & Bird, T. Grades of hypothyroidism. Br. Med. J. 1, 657–662 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zulewski, H., Muller, B., Exer, P., Miserez, A. R. & Staub, J. J. Estimation of tissue hypothyroidism by a new clinical score: evaluation of patients with various grades of hypothyroidism and controls. J. Clin. Endocrinol. Metab. 82, 771–776 (1997).

    CAS  PubMed  Google Scholar 

  19. Wiersinga, W. M. Guidance in subclinical hyperthyroidism and subclinical hypothyroidism: are we making progress? Eur. Thyroid. J. 4, 143–148 (2015).

    PubMed  PubMed Central  Google Scholar 

  20. Mendes, D., Alves, C., Silverio, N. & Batel Marques, F. Prevalence of undiagnosed hypothyroidism in Europe: a systematic review and meta-analysis. Eur. Thyroid. J. 8, 130–143 (2019).

    PubMed  PubMed Central  Google Scholar 

  21. Carle, A. et al. Hypothyroid symptoms and the likelihood of overt thyroid failure: a population-based case-control study. Eur. J. Endocrinol. 171, 593–602 (2014).

    CAS  PubMed  Google Scholar 

  22. Hoermann, R., Larisch, R., Dietrich, J. W. & Midgley, J. E. Derivation of a multivariate reference range for pituitary thyrotropin and thyroid hormones: diagnostic efficiency compared with conventional single-reference method. Eur. J. Endocrinol. 174, 735–743 (2016).

    CAS  PubMed  Google Scholar 

  23. Fitzgerald, S. P., Bean, N. G., Falhammar, H. & Tuke, J. Clinical parameters are more likely to be associated with thyroid hormone levels than with thyrotropin levels: a systematic review and meta-analysis. Thyroid 30, 1695–1709 (2020).

    PubMed  PubMed Central  Google Scholar 

  24. Surks, M. I. & Hollowell, J. G. Age-specific distribution of serum thyrotropin and antithyroid antibodies in the US population: implications for the prevalence of subclinical hypothyroidism. J. Clin. Endocrinol. Metab. 92, 4575–4582 (2007).

    CAS  PubMed  Google Scholar 

  25. Vadiveloo, T., Donnan, P. T., Murphy, M. J. & Leese, G. P. Age- and gender-specific TSH reference intervals in people with no obvious thyroid disease in Tayside, Scotland: the Thyroid Epidemiology, Audit, and Research Study (TEARS). J. Clin. Endocrinol. Metab. 98, 1147–1153 (2013).

    CAS  PubMed  Google Scholar 

  26. Bano, A. et al. Association of thyroid function with life expectancy with and without cardiovascular disease: the Rotterdam study. JAMA Int. Med. 177, 1650–1657 (2017).

    Google Scholar 

  27. Somwaru, L. L., Rariy, C. M., Arnold, A. M. & Cappola, A. R. The natural history of subclinical hypothyroidism in the elderly: the cardiovascular health study. J. Clin. Endocrinol. Metab. 97, 1962–1969 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. de Moura Souza, A. & Sichieri, R. Association between serum TSH concentration within the normal range and adiposity. Eur. J. Endocrinol. 165, 11–15 (2011).

    PubMed  Google Scholar 

  29. Garber, J. R. et al. Clinical practice guidelines for hypothyroidism in adults: cosponsored by the American Association of Clinical Endocrinologists and the American Thyroid Association. Thyroid 22, 1200–1235 (2012).

    CAS  PubMed  Google Scholar 

  30. Russell, W. et al. Free triiodothyronine has a distinct circadian rhythm that is delayed but parallels thyrotropin levels. J. Clin. Endocrinol. Metab. 93, 2300–2306 (2008).

    CAS  PubMed  Google Scholar 

  31. Gereben, B. et al. Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr. Rev. 29, 898–938 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Galton, V. A., Martinez, M. E., Dragon, J. A., St Germain, D. L. & Hernandez, A. The intrinsic activity of thyroxine is critical for survival and growth and regulates gene expression in neonatal liver. Thyroid 31, 528–541 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bianco, A. C., Salvatore, D., Gereben, B., Berry, M. J. & Larsen, P. R. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr. Rev. 23, 38–89 (2002).

    CAS  PubMed  Google Scholar 

  34. Larsen, P. R., Silva, J. E. & Kaplan, M. M. Relationships between circulating and intracellular thyroid hormones: physiological and clinical implications. Endocr. Rev. 2, 87–102 (1981).

    CAS  PubMed  Google Scholar 

  35. Baqui, M. M., Gereben, B., Harney, J. W., Larsen, P. R. & Bianco, A. C. Distinct subcellular localization of transiently expressed types 1 and 2 iodothyronine deiodinases as determined by immunofluorescence confocal microscopy. Endocrinology 141, 4309–4312 (2000).

    CAS  PubMed  Google Scholar 

  36. Bianco, A. C. & Silva, J. E. Cold exposure rapidly induces virtual saturation of brown adipose tissue nuclear T3 receptors. Am. J. Physiol. 255, E496–E503 (1988).

    CAS  PubMed  Google Scholar 

  37. Gereben, B., Goncalves, C., Harney, J. W., Larsen, P. R. & Bianco, A. C. Selective proteolysis of human type 2 deiodinase: a novel ubiquitin-proteasomal mediated mechanism for regulation of hormone activation. Mol. Endocrinol. 14, 1697–1708 (2000).

    CAS  PubMed  Google Scholar 

  38. Larsen, P. R. Thyroid-pituitary interaction: feedback regulation of thyrotropin secretion by thyroid hormones. N. Engl. J. Med. 306, 23–32 (1982).

    CAS  PubMed  Google Scholar 

  39. Werneck de Castro, J. P. et al. Differences in hypothalamic type 2 deiodinase ubiquitination explain localized sensitivity to thyroxine. J. Clin. Invest. 125, 769–781 (2015).

    PubMed  PubMed Central  Google Scholar 

  40. Gereben, B., McAninch, E. A., Ribeiro, M. O. & Bianco, A. C. Scope and limitations of iodothyronine deiodinases in hypothyroidism. Nat. Rev. Endocrinol. 11, 642–652 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ridgway, E. C. et al. Therapy of primary hypothyroidism with l-triiodothyronine: discordant cardiac and pituitary responses. Clin. Endocrinol. 13, 479–488 (1980).

    CAS  Google Scholar 

  42. Escobar-Morreale, H. F., Rey, F., Obregon, M. J. & Escobar, G. M. Only the combined treatment with thyroxine and triiodothyronine ensures euthyroidism in all tissues of the thyroidectomized rat. Endocrinology 137, 2490–2502 (1996).

    CAS  PubMed  Google Scholar 

  43. Bianco, A. C. & Kim, B. S. Pathophysiological relevance of deiodinase polymorphism. Curr. Opin. Endocrinol. Diabetes Obes. 25, 341–346 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Verloop, H., Dekkers, O. M., Peeters, R. P., Schoones, J. W. & Smit, J. W. Genetics in endocrinology: genetic variation in deiodinases: a systematic review of potential clinical effects in humans. Eur. J. Endocrinol. 171, R123–R135 (2014).

    CAS  PubMed  Google Scholar 

  45. Franca, M. M. et al. Human type 1 iodothyronine deiodinase (DIO1) mutations cause abnormal thyroid hormone metabolism. Thyroid 31, 202–207 (2020).

    PubMed  Google Scholar 

  46. Saravanan, P. et al. Psychological well-being in patients on ‘adequate’ doses of l-thyroxine: results of a large, controlled community-based questionnaire study. Clin. Endocrinol. 57, 577–585 (2002).

    CAS  Google Scholar 

  47. Wekking, E. M. et al. Cognitive functioning and well-being in euthyroid patients on thyroxine replacement therapy for primary hypothyroidism. Eur. J. Endocrinol. 153, 747–753 (2005).

    CAS  PubMed  Google Scholar 

  48. Marcelino, C. P. et al. Temporal pole responds to subtle changes in local thyroid hormone signaling. J. Endocr. Soc. 4, bvaa136 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Crantz, F. R., Silva, J. E. & Larsen, P. R. An analysis of the sources and quantity of 3,5,3′-triiodothyronine specifically bound to nuclear receptors in rat cerebral cortex and cerebellum. Endocrinology 110, 367–375 (1982).

    CAS  PubMed  Google Scholar 

  50. Tu, H. M. et al. Regional distribution of type 2 thyroxine deiodinase messenger ribonucleic acid in rat hypothalamus and pituitary and its regulation by thyroid hormone. Endocrinology 138, 3359–3368 (1997).

    CAS  PubMed  Google Scholar 

  51. Guadano-Ferraz, A., Obregon, M. J., St Germain, D. L. & Bernal, J. The type 2 iodothyronine deiodinase is expressed primarily in glial cells in the neonatal rat brain. Proc. Natl Acad. Sci. USA 94, 10391–10396 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Freitas, B. C. et al. Paracrine signaling by glial cell-derived triiodothyronine activates neuronal gene expression in the rodent brain and human cells. J. Clin. Invest. 120, 2206–2217 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Bocco, B. M. et al. Type 2 deiodinase disruption in astrocytes results in anxiety-depressive-like behavior in male mice. Endocrinology 157, 3682–3695 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Panicker, V. et al. Common variation in the DIO2 gene predicts baseline psychological well-being and response to combination thyroxine plus triiodothyronine therapy in hypothyroid patients. J. Clin. Endocrinol. Metab. 94, 1623–1629 (2009).

    CAS  PubMed  Google Scholar 

  55. Carle, A., Faber, J., Steffensen, R., Laurberg, P. & Nygaard, B. Hypothyroid patients encoding combined MCT10 and DIO2 gene polymorphisms may prefer L-T3 + L-T4 combination treatment — data using a blind, randomized, clinical study. Eur. Thyroid. J. 6, 143–151 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Panicker, V. et al. A paradoxical difference in relationship between anxiety, depression and thyroid function in subjects on and not on T4: findings from the HUNT study. Clin. Endocrinol. 71, 574–580 (2009).

    Google Scholar 

  57. Peterson, S. J. et al. An online survey of hypothyroid patients demonstrates prominent dissatisfaction. Thyroid 28, 707–721 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Jonklaas, J. & DeSale, S. The ages and TSH values of patients being prescribed levothyroxine. Ther. Adv. Endocrinol. Metab. 11, 2042018820937896 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Rodriguez-Gutierrez, R., Maraka, S., Ospina, N. S., Montori, V. M. & Brito, J. P. Levothyroxine overuse: time for an about face? Lancet Diabetes Endocrinol. 5, 246–248 (2017).

    PubMed  Google Scholar 

  60. Watt, T. et al. Is thyroid autoimmunity per se a determinant of quality of life in patients with autoimmune hypothyroidism? Eur. Thyroid. J. 1, 186–192 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Guldvog, I. et al. Thyroidectomy versus medical management for euthyroid patients with Hashimoto disease and persisting symptoms: a randomized trial. Ann. Int. Med. 170, 453–464 (2019).

    PubMed  Google Scholar 

  62. Oksnes, M. et al. Quality of life in European patients with Addison’s disease: validity of the disease-specific questionnaire AddiQoL. J. Clin. Endocrinol. Metab. 97, 568–576 (2012).

    PubMed  Google Scholar 

  63. Jorgensen, P., Langhammer, A., Krokstad, S. & Forsmo, S. Diagnostic labelling influences self-rated health. A prospective cohort study: the HUNT Study, Norway. Fam. Pract. 32, 492–499 (2015).

    PubMed  PubMed Central  Google Scholar 

  64. Lamahewa, K., Buszewicz, M., Walters, K., Marston, L. & Nazareth, I. Persistent unexplained physical symptoms: a prospective longitudinal cohort study in UK primary care. Br. J. Gen. Pract. 69, e246–e253 (2019).

    PubMed  PubMed Central  Google Scholar 

  65. Greenhalgh, T. & Wessely, S. ‘Health for me’: a sociocultural analysis of healthism in the middle classes. Br. Med. Bull. 69, 197–213 (2004).

    PubMed  Google Scholar 

  66. Centers for Disease Control and Prevention. Measuring healthy days. CDCP https://www.cdc.gov/hrqol/pdfs/mhd.pdf (2000).

  67. Bakas, T. et al. Systematic review of health-related quality of life models. Health Qual. Life Outcomes 10, 134 (2012).

    PubMed  PubMed Central  Google Scholar 

  68. Watt, T. et al. Quality of life in patients with benign thyroid disorders. A review. Eur. J. Endocrinol. 154, 501–510 (2006).

    CAS  PubMed  Google Scholar 

  69. Gao, F. et al. The Singaporean English and Chinese versions of the EQ-5D achieved measurement equivalence in cancer patients. J. Clin. Epidemiol. 62, 206–213 (2009).

    PubMed  Google Scholar 

  70. Cheung, Y. B., Machin, D., Fong, K. Y., Thio, S. T. & Thumboo, J. Discriminative ability of the Short-Form 36 health survey: a tale of two versions. Qual. Life Res. 14, 555–559 (2005).

    CAS  PubMed  Google Scholar 

  71. Ware, J. E. Jr, Keller, S. D., Gandek, B., Brazier, J. E. & Sullivan, M. Evaluating translations of health status questionnaires. Methods from the IQOLA project. International Quality of Life Assessment. Int. J. Technol. Assess. Health Care 11, 525–551 (1995).

    PubMed  Google Scholar 

  72. Skevington, S. M. & Epton, T. How will the sustainable development goals deliver changes in well-being? A systematic review and meta-analysis to investigate whether WHOQOL-BREF scores respond to change. BMJ Glob. Health 3, e000609 (2018).

    PubMed  PubMed Central  Google Scholar 

  73. eunethta. Endpoints used for relative effectiveness assessment of pharmaceuticals: health-related quality of life and utility measures. European Network for Health Technology Assessment https://www.eunethta.eu/wp-content/uploads/2013/01/Health-related-quality-of-life.pdf (2013).

  74. Fitzpatrick, R., Davey, C., Buxton, M. J. & Jones, D. R. Evaluating patient-based outcome measures for use in clinical trials. Health Technol. Assess. 2, 1–74 (1998).

    CAS  PubMed  Google Scholar 

  75. Oczkowski, C. & O’Donnell, M. Reliability of proxy respondents for patients with stroke: a systematic review. J. Stroke Cerebrovasc. Dis. 19, 410–416 (2010).

    PubMed  Google Scholar 

  76. Williams, L. S. et al. How valid are family proxy assessments of stroke patients’ health-related quality of life? Stroke 37, 2081–2085 (2006).

    PubMed  Google Scholar 

  77. Guyatt, G. H., Feeny, D. H. & Patrick, D. L. Measuring health-related quality of life. Ann. Intern. Med. 118, 622–629 (1993).

    CAS  PubMed  Google Scholar 

  78. Frei, A., Svarin, A., Steurer-Stey, C. & Puhan, M. A. Self-efficacy instruments for patients with chronic diseases suffer from methodological limitations — a systematic review. Health Qual. Life Outcomes 7, 86 (2009).

    PubMed  PubMed Central  Google Scholar 

  79. Jaeschke, R., Guyatt, G., Cook, D., Harper, S. & Gerstein, H. C. Spectrum of quality of life impairment in hypothyroidism. Qual. Life Res. 3, 323–327 (1994).

    CAS  PubMed  Google Scholar 

  80. McMillan, C. V., Bradley, C., Woodcock, A., Razvi, S. & Weaver, J. U. Design of new questionnaires to measure quality of life and treatment satisfaction in hypothyroidism. Thyroid 14, 916–925 (2004).

    CAS  PubMed  Google Scholar 

  81. Watt, T. et al. The thyroid-related quality of life measure ThyPRO has good responsiveness and ability to detect relevant treatment effects. J. Clin. Endocrinol. Metab. 99, 3708–3717 (2014).

    CAS  PubMed  Google Scholar 

  82. Watt, T. et al. Validity and reliability of the novel thyroid-specific quality of life questionnaire, ThyPRO. Eur. J. Endocrinol. 162, 161–167 (2010).

    CAS  PubMed  Google Scholar 

  83. Watt, T. et al. Which domains of thyroid-related quality of life are most relevant? Patients and clinicians provide complementary perspectives. Thyroid 17, 647–654 (2007).

    PubMed  Google Scholar 

  84. Watt, T. et al. Confirmatory factor analysis of the thyroid-related quality of life questionnaire ThyPRO. Health Qual. Life Outcomes 12, 126 (2014).

    PubMed  PubMed Central  Google Scholar 

  85. Watt, T. et al. Few items in the thyroid-related quality of life instrument ThyPRO exhibited differential item functioning. Qual. Life Res. 23, 327–338 (2014).

    PubMed  Google Scholar 

  86. Watt, T. et al. Development of a short version of the thyroid-related patient-reported outcome ThyPRO. Thyroid 25, 1069–1079 (2015).

    PubMed  Google Scholar 

  87. Watt, T. et al. Cross-cultural validity of the thyroid-specific quality-of-life patient-reported outcome measure, ThyPRO. Qual. Life Res. 24, 769–780 (2015).

    PubMed  Google Scholar 

  88. Nordqvist, S. F. et al. Determining minimal important change for the thyroid-related quality of life questionnaire ThyPRO. Endocr. Connect. 10, 316–324 (2021).

    PubMed  PubMed Central  Google Scholar 

  89. Watt, T. et al. Thyroid-specific patient reported outcome (ThyPRO). ePROVIDE https://eprovide.mapi-trust.org/instruments/thyroid-specific-patient-reported-outcome#member_access_content (2021).

  90. Canaris, G. J., Manowitz, N. R., Mayor, G. & Ridgway, E. C. The Colorado thyroid disease prevalence study. Arch. Intern. Med. 160, 526–534 (2000).

    CAS  PubMed  Google Scholar 

  91. Jaeschke, R. et al. Does treatment with l-thyroxine influence health status in middle-aged and older adults with subclinical hypothyroidism? J. Gen. Intern. Med. 11, 744–749 (1996).

    CAS  PubMed  Google Scholar 

  92. Meier, C. et al. TSH-controlled l-thyroxine therapy reduces cholesterol levels and clinical symptoms in subclinical hypothyroidism: a double blind, placebo-controlled trial (Basel Thyroid Study). J. Clin. Endocrinol. Metab. 86, 4860–4866 (2001).

    CAS  PubMed  Google Scholar 

  93. Kong, W. M. et al. A 6-month randomized trial of thyroxine treatment in women with mild subclinical hypothyroidism. Am. J. Med. 112, 348–354 (2002).

    CAS  PubMed  Google Scholar 

  94. Jorde, R. et al. Neuropsychological function and symptoms in subjects with subclinical hypothyroidism and the effect of thyroxine treatment. J. Clin. Endocrinol. Metab. 91, 145–153 (2006).

    CAS  PubMed  Google Scholar 

  95. Razvi, S. et al. The beneficial effect of l-thyroxine on cardiovascular risk factors, endothelial function, and quality of life in subclinical hypothyroidism: randomized, crossover trial. J. Clin. Endocrinol. Metab. 92, 1715–1723 (2007).

    CAS  PubMed  Google Scholar 

  96. Parle, J. et al. A randomized controlled trial of the effect of thyroxine replacement on cognitive function in community-living elderly subjects with subclinical hypothyroidism: the Birmingham Elderly Thyroid study. J. Clin. Endocrinol. Metab. 95, 3623–3632 (2010).

    CAS  PubMed  Google Scholar 

  97. Reuters, V. S. et al. Effects of subclinical hypothyroidism treatment on psychiatric symptoms, muscular complaints, and quality of life. Arq. Bras. Endocrinol. Metabol. 56, 128–136 (2012).

    PubMed  Google Scholar 

  98. Najafi, L. et al. Depressive symptoms in patients with subclinical hypothyroidism — the effect of treatment with levothyroxine: a double-blind randomized clinical trial. Endocr. Res. 40, 121–126 (2015).

    CAS  PubMed  Google Scholar 

  99. Mooijaart, S. P. et al. Association between levothyroxine treatment and thyroid-related symptoms among adults aged 80 years and older with subclinical hypothyroidism. J. Am. Med. Assoc. 322, 1977–1986 (2019).

    CAS  Google Scholar 

  100. Aghili, R. et al. Changes of subtests of Wechsler Memory Scale and cognitive function in subjects with subclinical hypothyroidism following treatment with levothyroxine. Arch. Med. Sci. 8, 1096–1101 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Stott, D. J., Rodondi, N., Bauer, D. C. & Group, T. S. Thyroid hormone therapy for older adults with subclinical hypothyroidism. N. Engl. J. Med. 377, e20 (2017).

    PubMed  Google Scholar 

  102. Villar, H. C., Saconato, H., Valente, O. & Atallah, A. N. Thyroid hormone replacement for subclinical hypothyroidism. Cochrane Database Syst. Rev. 2007, CD003419 (2007).

    PubMed Central  Google Scholar 

  103. Feller, M. et al. Association of thyroid hormone therapy with quality of life and thyroid-related symptoms in patients with subclinical hypothyroidism: a systematic review and meta-analysis. J. Am. Med. Assoc. 320, 1349–1359 (2018).

    CAS  Google Scholar 

  104. Pearce, S. H. et al. 2013 ETA guideline: management of subclinical hypothyroidism. Eur. Thyroid. J. 2, 215–228 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Bekkering, G. E. et al. Thyroid hormones treatment for subclinical hypothyroidism: a clinical practice guideline. Br. Med. J. 365, l2006 (2019).

    CAS  Google Scholar 

  106. Sawka, A. M. et al. Patient context and thyrotropin levels are important when considering treatment of subclinical hypothyroidism. Thyroid 29, 1359–1363 (2019).

    PubMed  Google Scholar 

  107. Winther, K. H. et al. Disease-specific as well as generic quality of life is widely impacted in autoimmune hypothyroidism and improves during the first six months of levothyroxine therapy. PLoS ONE 11, e0156925 (2016).

    PubMed  PubMed Central  Google Scholar 

  108. Roos, A., Linn-Rasker, S. P., van Domburg, R. T., Tijssen, J. P. & Berghout, A. The starting dose of levothyroxine in primary hypothyroidism treatment: a prospective, randomized, double-blind trial. Arch. Intern. Med. 165, 1714–1720 (2005).

    CAS  PubMed  Google Scholar 

  109. Schroeder, P. R. et al. A comparison of short-term changes in health-related quality of life in thyroid carcinoma patients undergoing diagnostic evaluation with recombinant human thyrotropin compared with thyroid hormone withdrawal. J. Clin. Endocrinol. Metab. 91, 878–884 (2006).

    CAS  PubMed  Google Scholar 

  110. Lee, J. et al. Quality of life and effectiveness comparisons of thyroxine withdrawal, triiodothyronine withdrawal, and recombinant thyroid-stimulating hormone administration for low-dose radioiodine remnant ablation of differentiated thyroid carcinoma. Thyroid 20, 173–179 (2010).

    PubMed  Google Scholar 

  111. Taieb, D. et al. Quality of life changes and clinical outcomes in thyroid cancer patients undergoing radioiodine remnant ablation (RRA) with recombinant human TSH (rhTSH): a randomized controlled study. Clin. Endocrinol. 71, 115–123 (2009).

    CAS  Google Scholar 

  112. Chow, S. M. et al. Health-related quality-of-life study in patients with carcinoma of the thyroid after thyroxine withdrawal for whole body scanning. Laryngoscope 116, 2060–2066 (2006).

    PubMed  Google Scholar 

  113. Quinque, E. M., Villringer, A., Kratzsch, J. & Karger, S. Patient-reported outcomes in adequately treated hypothyroidism — insights from the German versions of ThyDQoL, ThySRQ and ThyTSQ. Health Qual. Life Outcomes 11, 68 (2013).

    PubMed  PubMed Central  Google Scholar 

  114. Kelderman-Bolk, N., Visser, T. J., Tijssen, J. P. & Berghout, A. Quality of life in patients with primary hypothyroidism related to BMI. Eur. J. Endocrinol. 173, 507–515 (2015).

    CAS  PubMed  Google Scholar 

  115. Walsh, J. P. et al. Small changes in thyroxine dosage do not produce measurable changes in hypothyroid symptoms, well-being, or quality of life: results of a double-blind, randomized clinical trial. J. Clin. Endocrinol. Metab. 91, 2624–2630 (2006).

    CAS  PubMed  Google Scholar 

  116. Samuels, M. H., Kolobova, I., Niederhausen, M., Janowsky, J. S. & Schuff, K. G. Effects of altering levothyroxine (l-T4) doses on quality of life, mood, and cognition in l-T4 treated subjects. J. Clin. Endocrinol. Metab. 103, 1997–2008 (2018).

    PubMed  PubMed Central  Google Scholar 

  117. dos Santos Vigário, P. et al. Inadequate levothyroxine replacement for primary hypothyroidism is associated with poor health-related quality of life — a Brazilian multicentre study. Endocrine 44, 434–440 (2013).

    Google Scholar 

  118. Klaver, E. I. et al. Thyroid hormone status and health-related quality of life in the LifeLines Cohort Study. Thyroid 23, 1066–1073 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Guglielmi, R. et al. Shift from levothyroxine tablets to liquid formulation at breakfast improves quality of life of hypothyroid patients. Endocr. Metab. Immune Disord. Drug. Targets 18, 235–240 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Jonklaas, J. et al. Guidelines for the treatment of hypothyroidism: prepared by the American Thyroid Association Task Force on thyroid hormone replacement. Thyroid 24, 1670–1751 (2014).

    PubMed  PubMed Central  Google Scholar 

  121. Kaminski, J., Miasaki, F. Y., Paz-Filho, G., Graf, H. & Carvalho, G. A. Treatment of hypothyroidism with levothyroxine plus liothyronine: a randomized, double-blind, crossover study. Arch. Endocrinol. Metab. 60, 562–572 (2016).

    PubMed  Google Scholar 

  122. Shakir, M. K. M. et al. Comparative effectiveness of levothyroxine, desiccated thyroid extract, and levothyroxine+liothyronine in hypothyroidism. J. Clin. Endocrinol. Metab. 106, e4400–e4413 (2021).

    PubMed  PubMed Central  Google Scholar 

  123. Nygaard, B., Jensen, E. W., Kvetny, J., Jarlov, A. & Faber, J. Effect of combination therapy with thyroxine (T4) and 3,5,3′-triiodothyronine versus T4 monotherapy in patients with hypothyroidism, a double-blind, randomised cross-over study. Eur. J. Endocrinol. 161, 895–902 (2009).

    CAS  PubMed  Google Scholar 

  124. Bunevicius, R., Kazanavicius, G., Zalinkevicius, R. & Prange, A. J. Jr Effects of thyroxine as compared with thyroxine plus triiodothyronine in patients with hypothyroidism. N. Engl. J. Med. 340, 424–429 (1999).

    CAS  PubMed  Google Scholar 

  125. Valizadeh, M. et al. Efficacy of combined levothyroxine and liothyronine as compared with levothyroxine monotherapy in primary hypothyroidism: a randomized controlled trial. Endocr. Res. 34, 80–89 (2009).

    CAS  PubMed  Google Scholar 

  126. Saravanan, P., Simmons, D. J., Greenwood, R., Peters, T. J. & Dayan, C. M. Partial substitution of thyroxine (T4) with tri-iodothyronine in patients on T4 replacement therapy: results of a large community-based randomized controlled trial. J. Clin. Endocrinol. Metab. 90, 805–812 (2005).

    CAS  PubMed  Google Scholar 

  127. Walsh, J. P. et al. Combined thyroxine/liothyronine treatment does not improve well-being, quality of life, or cognitive function compared to thyroxine alone: a randomized controlled trial in patients with primary hypothyroidism. J. Clin. Endocrinol. Metab. 88, 4543–4550 (2003).

    CAS  PubMed  Google Scholar 

  128. Jonklaas, J. et al. Evidence-based use of levothyroxine/liothyronine combinations in treating hypothyroidism: a consensus document. Thyroid 31, 156–182 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Jonklaas, J. et al. Evidence-based use of levothyroxine/liothyronine combinations in treating hypothyroidism: a consensus document. Eur. Thyroid. J. 10, 10–38 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Dumitrescu, A. M. et al. Extended absorption of liothyronine from poly-zinc-liothyronine (PZL): results from a phase 1, double-blind, randomized, and controlled study in humans. Thyroid https://doi.org/10.1089/thy.2021.0304 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Pepper, G. M. & Casanova-Romero, P. Y. Letter to the Editor. Endocr. Pract. 24, 230 (2018).

    PubMed  Google Scholar 

  132. Hoang, T. D., Olsen, C. H., Mai, V. Q., Clyde, P. W. & Shakir, M. K. Desiccated thyroid extract compared with levothyroxine in the treatment of hypothyroidism: a randomized, double-blind, crossover study. J. Clin. Endocrinol. Metab. 98, 1982–1990 (2013).

    CAS  PubMed  Google Scholar 

  133. Bunevicius, R. & Prange, A. J. Jr. Psychiatric manifestations of Graves’ hyperthyroidism: pathophysiology and treatment options. CNS Drugs 20, 897–909 (2006).

    PubMed  Google Scholar 

  134. Kelly, T. An examination of myth: a favorable cardiovascular risk–benefit analysis of high-dose thyroid for affective disorders. J. Affect. Disord. 177, 49–58 (2015).

    PubMed  Google Scholar 

  135. Lewis, D. H., Kumar, J., Goulden, P. & Barnes, D. J. Improvements in quality of life in hypothyroid patients taking Armour thyroid. Endocr. Abstr. 15, P359 (2008).

    Google Scholar 

  136. Weetman, A. P. An update on the pathogenesis of Hashimoto’s thyroiditis. J. Endocrinol. Invest. 44, 883–890 (2021).

    CAS  PubMed  Google Scholar 

  137. Posabella, A. et al. Derivation of thyroid follicular cells from pluripotent stem cells: insights from development and implications for regenerative medicine. Front. Endocrinol. 12, 666565 (2021).

    Google Scholar 

  138. Bullmore, E. The art of medicine: inflamed depression. Lancet 392, 1189–1190 (2018).

    PubMed  Google Scholar 

  139. Thvilum, M. et al. Type and extent of somatic morbidity before and after the diagnosis of hypothyroidism. a nationwide register study. PLoS ONE 8, e75789 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Thvilum, M. et al. Increased psychiatric morbidity before and after the diagnosis of hypothyroidism: a nationwide register study. Thyroid 24, 802–808 (2014).

    PubMed  Google Scholar 

  141. Thvilum, M., Brandt, F., Brix, T. H. & Hegedus, L. Hypothyroidism is a predictor of disability pension and loss of labor market income: a Danish register-based study. J. Clin. Endocrinol. Metab. 99, 3129–3135 (2014).

    CAS  PubMed  Google Scholar 

  142. Heiberg Brix, T., Ferlov-Schwensen, C., Thvilum, M. & Hegedüs, L. Death by unnatural causes, mainly suicide, is increased in patients with Hashimoto’s thyroiditis. A nationwide Danish register study. Endocrine 65, 616–622 (2019).

    CAS  PubMed  Google Scholar 

  143. Brix, T. H. & Hegedus, L. Twin studies as a model for exploring the aetiology of autoimmune thyroid disease. Clin. Endocrinol. 76, 457–464 (2012).

    CAS  Google Scholar 

  144. Perros, P. et al. The enigma of persistent symptoms in hypothyroid patients treated with levothyroxine: a narrative review. Clin. Endocrinol. https://doi.org/10.1111/cen.14473 (2021).

    Article  Google Scholar 

  145. Nagy, E. V., Perros, P., Papini, E., Katko, M. & Hegedus, L. New formulations of levothyroxine in the treatment of hypothyroidism: trick or treat? Thyroid 31, 193–201 (2021).

    CAS  PubMed  Google Scholar 

  146. Michaelsson, L. F. et al. Levothyroxine/Liothyronine combination therapy and quality of life: is it all about weight loss? Eur. Thyroid. J. 7, 243–250 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Fadeyev, V. V., Morgunova, T. B., Melnichenko, G. A. & Dedov, I. I. Combined therapy with l-thyroxine and l-triiodothyronine compared to l-thyroxine alone in the treatment of primary hypothyroidism. Hormones 9, 245–252 (2010).

    PubMed  Google Scholar 

Download references

Acknowledgements

J.J. has received support from NIDCR grant R01DE025822 and NCATS grant UL1TR001409. A.C.B. has received support from NIH grants DK58538 and DK65055.

Author information

Authors and Affiliations

Authors

Contributions

L.H., A.C.B., J.J., S.H.P., A.P.W. and P.P. researched data for the article, wrote the article, contributed substantially to the discussion of content and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Laszlo Hegedüs.

Ethics declarations

Competing interests

S.H.P. has received speaker fees from Quidel, Sanofi and Berlin Chemie, and consulting fees from Apitope. P.P. has received consulting fees from IBSA Institut Biochimique and speaker fees from Berlin Chemie. L.H. has received consulting fees from IBSA Institut Biochimique and speaker fees from Berlin Chemie. A.C.B. is a consultant for AbbVie, Allergan, Synthonics, Sention, and Thyron. J.J. and A.P.W. declare no competing interests.

Additional information

Peer review information

Nature Reviews Endocrinology thanks B. Biondi and the other, anonymous, peer reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Free T4

T4 that is not bound to protein in the circulation and is therefore available to act on tissues

Acrophase

The time at which a peak in a circadian rhythm occurs

Thyrotrophs

Cells in the anterior pituitary gland that secrete TSH

Tanycytes

Specialized ependymal cells lining the walls of the third ventricle

Responsive

The responsiveness of an instrument determines its ability to detect relevant clinical changes over time

Acceptable

How acceptable an instrument is determines its ease of use by participants

Test–retest reliability

Stability of the scores obtained from the same person on two or more separate occasions

Minimal important change

The smallest change in an outcome that is perceived by an individual patient as important

Thyrotoxic

A metabolic state characterized by elevated serum levels of tri-iodothyronine

Content validity

Extent to which the items tested are representative of the entire domain the test seeks to measure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hegedüs, L., Bianco, A.C., Jonklaas, J. et al. Primary hypothyroidism and quality of life. Nat Rev Endocrinol 18, 230–242 (2022). https://doi.org/10.1038/s41574-021-00625-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-021-00625-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing