Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

STEM CELL BIOLOGY

HMCES safeguards genome integrity and long-term self-renewal of hematopoietic stem cells during stress responses

Abstract

Hematopoietic stress drives quiescent hematopoietic stem cells (HSCs) to proliferate, generating reactive oxygen species (ROS) and oxidative DNA damage including abasic sites. Such a coupling between rapid DNA replication and a burst of abasic site formation during HSC stress responses, however, presents a challenge to accurately repair abasic sites located in replication-associated single-stranded DNA. Here we show that HMCES, a novel shield of abasic sites, plays pivotal roles in overcoming this challenge upon HSC activation. While HMCES was dispensable for steady-state hematopoiesis, Hmces-deficient HSCs exhibited compromised long-term self-renewal capacity in response to hematopoietic stress such as myeloablation and transplantation. Loss of HMCES resulted in accumulation of DNA lesions due to impaired resolution of abasic sites generated by activation-induced ROS in activated HSCs and broad downregulation of DNA damage response and repair pathways. Moreover, Hmces-deficient mice died from bone marrow failure after exposure to sublethal irradiation, which also produces ROS. Notably, dysregulation of HMCES occurs frequently in acute lymphocytic leukemia (ALL) and is associated with poor clinical outcomes. Together, our findings not only highlighted HMCES as a novel genome protector in activated HSCs, but also position it as a potential selective target against ALL while sparing normal hematopoiesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: HMCES is dispensable for steady-state hematopoiesis.
Fig. 2: HMCES-deficient LT-HSCs exhibit compromised self-renewal capacity in stress hematopoiesis.
Fig. 3: HMCES depletion results in elevated DNA lesion upon LT-HSC activation.
Fig. 4: Loss of HMCES confers hypersensitivity to irradiation.
Fig. 5: HMCES deficiency leads to downregulation of DNA damage response (DDR) and repair genes in LT-HSCs.
Fig. 6: Elevated expression of HMCES occurs frequently in ALL and is associated with poor clinical outcome.

Similar content being viewed by others

Data availability

RNA-seq data generated in this study have been deposited in the Gene Expression Omnibus database under accession number GSE150721.

References

  1. Orkin SH, Zon LI. Hematopoiesis: an evolving paradigm for stem cell biology. Cell. 2008;132:631–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Akunuru S, Geiger H. Aging, clonality, and rejuvenation of hematopoietic stem cells. Trends Mol Med. 2016;22:701–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mandal PK, Blanpain C, Rossi DJ. DNA damage response in adult stem cells: pathways and consequences. Nat Rev Mol Cell Biol. 2011;12:198–202.

    Article  CAS  PubMed  Google Scholar 

  4. Vitale I, Manic G, De Maria R, Kroemer G, Galluzzi L. DNA damage in stem cells. Mol cell. 2017;66:306–19.

    Article  CAS  PubMed  Google Scholar 

  5. Sun J, Ramos A, Chapman B, Johnnidis JB, Le L, Ho YJ, et al. Clonal dynamics of native haematopoiesis. Nature. 2014;514:322–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Busch K, Klapproth K, Barile M, Flossdorf M, Holland-Letz T, Schlenner SM, et al. Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature. 2015;518:542–6.

    Article  CAS  PubMed  Google Scholar 

  7. Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell. 2004;118:149–61.

    Article  CAS  PubMed  Google Scholar 

  8. Orford KW, Scadden DT. Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat Rev Genet. 2008;9:115–28.

    Article  CAS  PubMed  Google Scholar 

  9. Beerman I, Seita J, Inlay MA, Weissman IL, Rossi DJ. Quiescent hematopoietic stem cells accumulate DNA damage during aging that is repaired upon entry into cell cycle. Cell Stem Cell. 2014;15:37–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mohrin M, Bourke E, Alexander D, Warr MR, Barry-Holson K, Le Beau MM, et al. Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell. 2010;7:174–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Takubo K, Nagamatsu G, Kobayashi CI, Nakamura-Ishizu A, Kobayashi H, Ikeda E, et al. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell. 2013;12:49–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Walter D, Lier A, Geiselhart A, Thalheimer FB, Huntscha S, Sobotta MC, et al. Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells. Nature. 2015;520:549–52.

    Article  PubMed  Google Scholar 

  13. Essers MA, Offner S, Blanco-Bose WE, Waibler Z, Kalinke U, Duchosal MA, et al. IFNalpha activates dormant haematopoietic stem cells in vivo. Nature. 2009;458:904–8.

    Article  CAS  PubMed  Google Scholar 

  14. Breen AP, Murphy JA. Reactions of oxyl radicals with DNA. Free Radic Biol Med. 1995;18:1033–77.

    Article  CAS  PubMed  Google Scholar 

  15. Nakamura J, Swenberg JA. Endogenous apurinic/apyrimidinic sites in genomic DNA of mammalian tissues. Cancer Res. 1999;59:2522–6.

    CAS  PubMed  Google Scholar 

  16. Boiteux S, Guillet M. Abasic sites in DNA: repair and biological consequences in Saccharomyces cerevisiae. DNA Repair. 2004;3:1–12.

    Article  CAS  PubMed  Google Scholar 

  17. Dianov GL, Sleeth KM, Dianova II, Allinson SL. Repair of abasic sites in DNA. Mutat Res. 2003;531:157–63.

    Article  CAS  PubMed  Google Scholar 

  18. Alexander JL, Orr-Weaver TL. Replication fork instability and the consequences of fork collisions from rereplication. Genes Dev. 2016;30:2241–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sale JE. Translesion DNA synthesis and mutagenesis in eukaryotes. Cold Spring Harb Perspect Biol. 2013;5:a012708.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mohni KN, Wessel SR, Zhao R, Wojciechowski AC, Luzwick JW, Layden H, et al. HMCES maintains genome integrity by shielding abasic sites in single-strand DNA. Cell. 2019;176:144–153. e113

    Article  CAS  PubMed  Google Scholar 

  21. Thompson PS, Amidon KM, Mohni KN, Cortez D, Eichman BF. Protection of abasic sites during DNA replication by a stable thiazolidine protein-DNA cross-link. Nat Struct Mol Biol. 2019;26:613–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Halabelian L, Ravichandran M, Li Y, Zeng H, Rao A, Aravind L, et al. Structural basis of HMCES interactions with abasic DNA and multivalent substrate recognition. Nat Struct Mol Biol. 2019;26:607–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang N, Bao H, Chen L, Liu Y, Li Y, Wu B, et al. Molecular basis of abasic site sensing in single-stranded DNA by the SRAP domain of E. coli yield. Nucleic Acids Res. 2019;47:10388–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Srivastava M, Su D, Zhang H, Chen Z, Tang M, Nie L, et al. HMCES safeguards replication from oxidative stress and ensures error-free repair. EMBO Rep. 2020: e49123.

  25. Aravind L, Anand S, Iyer LM. Novel autoproteolytic and DNA-damage sensing components in the bacterial SOS response and oxidized methylcytosine-induced eukaryotic DNA demethylation systems. Biol Direct. 2013;8:20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405.

    Article  CAS  PubMed  Google Scholar 

  27. Liu S, Liu H, Qin R, Shu Y, Liu Z, Zhang P, et al. The cellular senescence of leukemia-initiating cells from acute lymphoblastic leukemia is postponed by β-Arrestin1 binding with P300-Sp1 to regulate hTERT transcription. Cell Death Dis. 2017;8:e2756–e2756. 2017/04/01

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rong Y, Ji S-Y, Zhu Y-Z, Wu Y-W, Shen L, Fan H-Y. ZAR1 and ZAR2 are required for oocyte meiotic maturation by regulating the maternal transcriptome and mRNA translational activation. Nucleic Acids Res. 2019;47:11387–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kweon SM, Zhu B, Chen Y, Aravind L, Xu SY, Feldman DE. Erasure of tet-oxidized 5-methylcytosine by a SRAP nuclease. Cell Rep. 2017;21:482–94.

    Article  CAS  PubMed  Google Scholar 

  30. Shen Y, Yue F, McCleary D, Ye Z, Edsall LE, Kuan S, et al. A map of cis-regulatory sequences in the mouse genome. Nature. 2012;488:116–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ehninger A, Boch T, Medyouf H, Müdder K, Orend G, Trumpp A. Loss of SPARC protects hematopoietic stem cells from chemotherapy toxicity by accelerating their return to quiescence. Blood. 2014;123:4054–63.

    Article  CAS  PubMed  Google Scholar 

  32. Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell. 2002;109:625–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Olive PL, Banáth JP. The comet assay: a method to measure DNA damage in individual cells. Nat Protoc. 2006;1:23–29.

    Article  CAS  PubMed  Google Scholar 

  34. Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988;175:184–91.

    Article  CAS  PubMed  Google Scholar 

  35. Kumaravel TS, Jha AN. Reliable Comet assay measurements for detecting DNA damage induced by ionising radiation and chemicals. Mutat Res. 2006;605:7–16.

    Article  CAS  PubMed  Google Scholar 

  36. Azzam EI, Jay-Gerin JP, Pain D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 2012;327:48–60.

    Article  CAS  PubMed  Google Scholar 

  37. Garaycoechea JI, Crossan GP, Langevin F, Daly M, Arends MJ, Patel KJ. Genotoxic consequences of endogenous aldehydes on mouse haematopoietic stem cell function. Nature. 2012;489:571–5.

    Article  CAS  PubMed  Google Scholar 

  38. Garaycoechea JI, Crossan GP, Langevin F, Mulderrig L, Louzada S, Yang F, et al. Alcohol and endogenous aldehydes damage chromosomes and mutate stem cells. Nature. 2018;553:171–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Langevin F, Crossan GP, Rosado IV, Arends MJ, Patel KJ. Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice. Nature. 2011;475:53–58.

    Article  CAS  PubMed  Google Scholar 

  40. Mahmoud MI, Potter JJ, Colvin OM, Hilton J, Mezey E. Effect of 4-(diethylamino)benzaldehyde on ethanol metabolism in mice. Alcohol Clin Exp Res. 1993;17:1223–7.

    Article  CAS  PubMed  Google Scholar 

  41. Morgan CA, Parajuli B, Buchman CD, Dria K, Hurley TD. N,N-diethylaminobenzaldehyde (DEAB) as a substrate and mechanism-based inhibitor for human ALDH isoenzymes. Chem Biol Interact. 2015;234:18–28.

    Article  CAS  PubMed  Google Scholar 

  42. Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov. 2009;8:579–91.

    Article  CAS  PubMed  Google Scholar 

  43. Bagger FO, Sasivarevic D, Sohi SH, Laursen LG, Pundhir S, Sonderby CK, et al. BloodSpot: a database of gene expression profiles and transcriptional programs for healthy and malignant haematopoiesis. Nucleic Acids Res. 2016;44:D917–924.

    Article  CAS  PubMed  Google Scholar 

  44. Errol CF, Graham CW, Wolfram S, Richard DW, Roger AS, Tom E. DNA repair and mutagenesis, Second Edition. American Society of Microbiology, 2006.

  45. Shao L, Luo Y, Zhou D. Hematopoietic stem cell injury induced by ionizing radiation. Antioxid Redox Signal. 2014;20:1447–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shao L, Feng W, Li H, Gardner D, Luo Y, Wang Y, et al. Total body irradiation causes long-term mouse BM injury via induction of HSC premature senescence in an Ink4a- and Arf-independent manner. Blood. 2014;123:3105–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shukla V, Halabelian L, Balagere S, Samaniego-Castruita D, Feldman DE, Arrowsmith CH, et al. HMCES functions in the alternative end-joining pathway of the DNA DSB repair during class switch recombination in B cells. Mol Cell. 2020;77:384–394. e384

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs. Lei Li, Pinglong Xu, and Pengxu Qian for helpful comments and discussions. We are also grateful to Meilei Sheng, Shu Qiang and the core facility of Life Sciences Institute at Zhejiang University for technical assistance. This project was supported by National Natural Science Foundation of China (32022023, 31871478, 81770155, 82022026), National Key Research and Development Programs of China (2017YFC1001500, 2018YFA0109300, 2017YFA0103302), Zhejiang Provincial Natural Science Foundation of China (LR18C060001), Science Foundation for Distinguished Young Scholars of Guangdong Province (2019B151502008), and Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Contributions

LS, ZJ, and HW conceived and supervised the project; YP, HZ, FW, FH, YZ, LC, QS, YL, and MS performed the experiments and analyzed the data; LC, QS, and HF generated the Hmces−/− mice; LZ collected clinical samples; YP and LS wrote the manuscript with inputs from CL, JH, LZ, HF, ZJ, and HW, and all authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Zhenyu Ju, Hu Wang or Li Shen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Y., Zuo, H., Wen, F. et al. HMCES safeguards genome integrity and long-term self-renewal of hematopoietic stem cells during stress responses. Leukemia 36, 1123–1131 (2022). https://doi.org/10.1038/s41375-021-01499-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-021-01499-5

This article is cited by

Search

Quick links