Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-cell RNA-seq recognized the initiator of epithelial ovarian cancer recurrence

Abstract

Epithelial ovarian cancers (EOCs) are sensitive to chemotherapy but will ultimately relapse and develop drug resistance. The origin of EOC recurrence has been elusive due to intra-tumor heterogeneity. Here we performed single-cell RNA sequencing (scRNA-seq) in 13,369 cells from primary, untreated peritoneal metastasis, and relapse tumors. We used time-resolved analysis to chart the developmental sequence of cells from the metastatic tumors, then traced the earliest replanting cells back to the primary tumors. We discovered seven distinct subpopulations in primary tumors where the CYR61+ “stress” subpopulation was identified as the relapse-initiators. Furthermore, a subpopulation of RGS5+ cancer-associated fibroblasts (CAFs) was found to strongly support tumor metastasis. The combined CYR61/RGS5 expression scores significantly correlated with the relapse-free-survival of EOC patients and can be used as predictors of EOC recurrence. Our study provides insights into the mechanism of EOC recurrence and presents CYR61+ relapse-initiating cells as potential therapeutic targets to prevent EOC relapse.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dissection of EOC tumors with scRNA-seq.
Fig. 2: Identification of the initiation cells of metastatic tumors.
Fig. 3: Characterization of the metastatic-initiation cells.
Fig. 4: Trace the relapse-initiation cells to the primary tumors.
Fig. 5: Characterization of CAFs in EOC tumors.
Fig. 6: Correlation between CYR61/RGS5 expression levels with RFI of EOC.

Similar content being viewed by others

Data availability

Data generated for this study are available through the Gene Expression Omnibus (GEO,) accession number GSE130000.

Code availability

The version and parameters for the R packages used in this study are available in Methods and Supplementary Methods.

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34.

    Article  PubMed  Google Scholar 

  2. Kipps E, Tan DS, Kaye SB. Meeting the challenge of ascites in ovarian cancer: new avenues for therapy and research. Nat Rev Cancer. 2013;13:273–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lengyel E. Ovarian cancer development and metastasis. Am J Pathol. 2010;177:1053–64.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Corrado G, Salutari V, Palluzzi E, Distefano MG, Scambia G, Ferrandina G. Optimizing treatment in recurrent epithelial ovarian cancer. Expert Rev Anticancer Ther. 2017;17:1147–58.

    Article  CAS  PubMed  Google Scholar 

  5. Hennessy BT, Coleman RL, Markman M. Ovarian cancer. Lancet 2009;374:1371–82.

    Article  CAS  PubMed  Google Scholar 

  6. Cannistra SA. Cancer of the ovary. N Engl J Med. 2004;351:2519–29.

    Article  CAS  PubMed  Google Scholar 

  7. McGuire WP, Hoskins WJ, Brady MF, Kucera PR, Partridge EE, Look KY, et al. Cyclophosphamide and cisplatin compared with paclitaxel and cisplatin in patients with stage III and stage IV ovarian cancer. N Engl J Med. 1996;334:1–6.

    Article  CAS  PubMed  Google Scholar 

  8. Wang D, Lippard SJ. Cellular processing of platinum anticancer drugs. Nat Rev Drug Disco. 2005;4:307–20.

    Article  CAS  Google Scholar 

  9. Abal M, Andreu JM, Barasoain I. Taxanes: microtubule and centrosome targets, and cell cycle dependent mechanisms of action. Curr Cancer Drug Targets. 2003;3:193–203.

    Article  CAS  PubMed  Google Scholar 

  10. Massagué J, Obenauf AC. Metastatic colonization by circulating tumour cells. Nature 2016;529:298–306.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Klein CA. Framework models of tumor dormancy from patient-derived observations. Curr Opin Genet Dev. 2011;21:42–9.

    Article  CAS  PubMed  Google Scholar 

  12. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19:1423–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hoang-Minh LB, Siebzehnrubl FA, Yang C, Suzuki-Hatano S, Dajac K, Loche T, et al. Infiltrative and drug-resistant slow-cycling cells support metabolic heterogeneity in glioblastoma. EMBO J. 2018;37:e98772.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  15. Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20:69–84.

    Article  CAS  PubMed  Google Scholar 

  16. Calon A, Tauriello DV, Batlle E. TGF-beta in CAF-mediated tumor growth and metastasis. Semin Cancer Biol. 2014;25:15–22.

    Article  CAS  PubMed  Google Scholar 

  17. Kan T, Wang W, Ip PP, Zhou S, Wong AS, Wang X, et al. Single-cell EMT-related transcriptional analysis revealed intra-cluster heterogeneity of tumor cell clusters in epithelial ovarian cancer ascites. Oncogene 2020;39:4227–40.

    Article  CAS  PubMed  Google Scholar 

  18. Crick FH. On protein synthesis. Symp Soc Exp Biol. 1958;12:138–63.

    CAS  PubMed  Google Scholar 

  19. Puram SV, Tirosh I, Parikh AS, Patel AP, Yizhak K, Gillespie S, et al. Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Head and Neck Cancer. Cell 2017;171:1611–24.e24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tirosh I, Izar B, Prakadan SM, Wadsworth MH II, Treacy D, Trombetta JJ, et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 2016;352:189–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vladoiu MC, El-Hamamy I, Donovan LK, Farooq H, Holgado BL, Sundaravadanam Y, et al. Childhood cerebellar tumours mirror conserved fetal transcriptional programs. Nature 2019;572:67–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Khalique L, Ayhan A, Weale ME, Jacobs IJ, Ramus SJ, Gayther SA. Genetic intra-tumour heterogeneity in epithelial ovarian cancer and its implications for molecular diagnosis of tumours. J Pathol. 2007;211:286–95.

    Article  CAS  PubMed  Google Scholar 

  23. Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 2014;344:1396–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tirosh I, Venteicher AS, Hebert C, Escalante LE, Patel AP, Yizhak K, et al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature 2016;539:309–13.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Goveia J, Rohlenova K, Taverna F, Treps L, Conradi LC, Pircher A, et al. An Integrated Gene Expression Landscape Profiling Approach to Identify Lung Tumor Endothelial Cell Heterogeneity and Angiogenic Candidates. Cancer Cell. 2020;37:21–36.e13.

    Article  CAS  PubMed  Google Scholar 

  26. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell 2015;161:1202–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H, Petukhov V, et al. RNA velocity of single cells. Nature 2018;560:494–8.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32:381–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol. 2017;17:559–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kohn KW, Jackman J, O’Connor PM. Cell cycle control and cancer chemotherapy. J Cell Biochem. 1994;54:440–52.

    Article  CAS  PubMed  Google Scholar 

  31. Sosa MS, Bragado P, Aguirre-Ghiso JA. Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat Rev Cancer. 2014;14:611–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dan S, Tsunoda T, Kitahara O, Yanagawa R, Zembutsu H, Katagiri T, et al. An integrated database of chemosensitivity to 55 anticancer drugs and gene expression profiles of 39 human cancer cell lines. Cancer Res. 2002;62:1139–47.

    CAS  PubMed  Google Scholar 

  33. Landen CN Jr, Goodman B, Katre AA, Steg AD, Nick AM, Stone RL, et al. Targeting aldehyde dehydrogenase cancer stem cells in ovarian cancer. Mol Cancer Ther. 2010;9:3186–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zembutsu H, Ohnishi Y, Tsunoda T, Furukawa Y, Katagiri T, Ueyama Y, et al. Genome-wide cDNA microarray screening to correlate gene expression profiles with sensitivity of 85 human cancer xenografts to anticancer drugs. Cancer Res. 2002;62:518–27.

    CAS  PubMed  Google Scholar 

  35. Pantel K, Alix-Panabières C. Bone marrow as a reservoir for disseminated tumor cells: a special source for liquid biopsy in cancer patients. Bonekey Rep. 2014;3:584.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lau LF. CCN1/CYR61: the very model of a modern matricellular protein. Cell Mol Life Sci. 2011;68:3149–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hyun HB, Moon JY, Cho SK. Quercetin Suppresses CYR61-Mediated Multidrug Resistance in Human Gastric Adenocarcinoma AGS Cells. Molecules 2018;23:E209.

    Article  PubMed  Google Scholar 

  38. Maity G, Ghosh A, Gupta V, Haque I, Sarkar S, Das A, et al. CYR61/CCN1 Regulates dCK and CTGF and Causes Gemcitabine-resistant Phenotype in Pancreatic Ductal Adenocarcinoma. Mol Cancer Ther. 2019;18:788–800.

    Article  CAS  PubMed  Google Scholar 

  39. Lin MT, Chang CC, Chen ST, Chang HL, Su JL, Chau YP, et al. Cyr61 expression confers resistance to apoptosis in breast cancer MCF-7 cells by a mechanism of NF-kappaB-dependent XIAP up-regulation. J Biol Chem. 2004;279:24015–23.

    Article  CAS  PubMed  Google Scholar 

  40. Gery S, Xie D, Yin D, Gabra H, Miller C, Wang H, et al. Ovarian Carcinomas: CCN Genes Are Aberrantly Expressed and CCN1 Promotes Proliferation of These Cells. Clin Cancer Res. 2005;11:7243–54.

    Article  CAS  PubMed  Google Scholar 

  41. Martz CA, Ottina KA, Singleton KR, Jasper JS, Wardell SE, Peraza-Penton A, et al. Systematic identification of signaling pathways with potential to confer anticancer drug resistance. Sci Signal. 2014;7:ra121.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Vasey PA. Resistance to chemotherapy in advanced ovarian cancer: mechanisms and current strategies. Br J Cancer. 2003;89:S23–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gascard P, Tlsty TD. Carcinoma-associated fibroblasts: orchestrating the composition of malignancy. Genes Dev. 2016;30:1002–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zlobec I, Steele R, Terracciano L, Jass JR, Lugli A. Selecting immunohistochemical cut-off scores for novel biomarkers of progression and survival in colorectal cancer. J Clin Pathol. 2007;60:1112–6.

    Article  PubMed  Google Scholar 

  45. Hellinger JW, Hüchel S, Goetz L, Bauerschmitz G, Emons G, Gründker C. Inhibition of CYR61-S100A4 Axis Limits Breast Cancer Invasion. Front Oncol. 2019;9:1074.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tong X, Xie D, O’Kelly J, Miller CW, Muller-Tidow C, Koeffler HP. Cyr61, a member of CCN family, is a tumor suppressor in non-small cell lung cancer. J Biol Chem. 2001;276:47709–14.

    Article  CAS  PubMed  Google Scholar 

  47. Lin J, Huo R, Wang L, Zhou Z, Sun Y, Shen B, et al. A novel anti-Cyr61 antibody inhibits breast cancer growth and metastasis in vivo. Cancer Immunol Immunother. 2012;61:677–87.

    Article  CAS  PubMed  Google Scholar 

  48. Li X, Yuan N, Lin L, Yin L, Qu Y. Targeting cysteine-rich angiogenic inducer-61 by antibody immunotherapy suppresses growth and migration of non-small cell lung cancer. Exp Ther Med. 2018;16:730–8.

    PubMed  PubMed Central  Google Scholar 

  49. Zhang Y, Diao Z, Su L, Sun H, Li R, Cui H, et al. MicroRNA-155 contributes to preeclampsia by down-regulating CYR61. Am J Obstet Gynecol. 2010;202:466.e1–7.

    Article  Google Scholar 

  50. Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T. Opinion: migrating cancer stem cells - an integrated concept of malignant tumour progression. Nat Rev Cancer. 2005;5:744–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Junhai Wang from Taian Tumor Prevention and Treatment Hospital for assistance with IHC. This work was supported by grants from the General Research Fund (CityU_11319516) and the Research Impact Fund (R1020-18F) of Hong Kong Research Grant Council, the Guangdong Frontier and Key Technology Development Fund (2017B020226001) of Guangdong Province, PR China, and the Knowledge Innovation Program (JCYJ20170818095453642 and JCYJ20180307123759162) of Shenzhen Municipality, PR China.

Author information

Authors and Affiliations

Authors

Contributions

TK conceived the project, coordinated the collaboration, designed and performed the experiments, processed and analyzed the data, generated figures, and drafted and revised the paper. SZ provided the FFPE samples and supervisory support for histological study. SZ provided the fresh tumor samples for scRNA-seq. YZ and YZ checked the FFPE sample pathology and helped with the IHC experiments. YG checked the FFPE sample pathology and helped with the IHC imaging. TZ, FG, and XW provided computational support. LZ helped with collecting fresh tumor samples. MY supervised the project, revised the paper, and provided funding support to the project.

Corresponding authors

Correspondence to Tongtong Kan or Mengsu Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kan, T., Zhang, S., Zhou, S. et al. Single-cell RNA-seq recognized the initiator of epithelial ovarian cancer recurrence. Oncogene 41, 895–906 (2022). https://doi.org/10.1038/s41388-021-02139-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-02139-z

This article is cited by

Search

Quick links