Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pharmacogenomic analysis of a genetically distinct Indigenous population

Abstract

Indigenous Australians face a disproportionately severe burden of chronic disease relative to other Australians, with elevated rates of morbidity and mortality. While genomics technologies are slowly gaining momentum in personalised treatments for many, a lack of pharmacogenomic research in Indigenous peoples could delay adoption. Appropriately implementing pharmacogenomics in clinical care necessitates an understanding of the frequencies of pharmacologically relevant genetic variants within Indigenous populations. We analysed whole-genome sequence data from 187 individuals from the Tiwi Islands and characterised the pharmacogenomic landscape of this population. Specifically, we compared variant profiles and allelic distributions of previously described pharmacologically significant genes and variants with other population groups. We identified 22 translationally relevant pharmacogenomic variants and 18 clinically actionable guidelines with implications for drug dosing and treatment of conditions including heart disease, diabetes and cancer. We specifically observed increased poor and intermediate metabolizer phenotypes in the CYP2C9 (PM:19%, IM:44%) and CYP2C19 (PM:18%, IM:44%) genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PCA plot of Tiwi, Andaman, and 1KGP3 populations PCA plots shown correspond to 713,220 markers and 2631 individuals (10 Andamanese, 187 Tiwi, and 2504 individuals from the 1KGP3 dataset).
Fig. 2: Predicted phenotype distributions in pharmaco-genes.
Fig. 3: Distributions of CYP2C19, CYP2C9, and CYP2D6 star-allele frequencies among global populations.
Fig. 4: High-evidence PGx variants in Tiwi genomes PGx variants (PharmGKB levels 1A, 1B, and PGx-SV) present in the Tiwi genomes with allele frequencies ≥0.1 and significantly different from 1KGP3_ALL (Adj P value ≤ 0.05).

Similar content being viewed by others

References

  1. Roden DM, McLeod HL, Relling MV, Williams MS, Mensah GA, Peterson JF, et al. Pharmacogenomics. Lancet. 2019;394:521–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Weinshilboum R, Wang L. Pharmacogenomics: bench to bedside. Nat Rev Drug Discov. 2004;3:739–48.

    Article  CAS  PubMed  Google Scholar 

  3. Sultana J, Cutroneo P, Trifiro G. Clinical and economic burden of adverse drug reactions. J Pharmacol Pharmacother. 2013;4:S73–7.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Reisberg S, Krebs K, Lepamets M, Kals M, Magi R, Metsalu K, et al. Translating genotype data of 44,000 biobank participants into clinical pharmacogenetic recommendations: challenges and solutions. Genet Med. 2019;21:1345–54.

    Article  PubMed  Google Scholar 

  5. McInnes G, Lavertu A, Sangkuhl K, Klein TE, Whirl-Carrillo M, Altman RB. Pharmacogenetics at scale: an analysis of the UK Biobank. Clin Pharmacol Ther. 2021;109:1528–37.

  6. Nagar SD, Moreno AM, Norris ET, Rishishwar L, Conley AB, O’Neal KL, et al. Population pharmacogenomics for precision public health in Colombia. Front Genet. 2019;10:241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sivadas A, Scaria V. Pharmacogenomic survey of Qatari populations using whole-genome and exome sequences. Pharmacogenomics J. 2018;18:590–600.

    Article  CAS  PubMed  Google Scholar 

  8. Vos T, Barker B, Begg S, Stanley L, Lopez AD. Burden of disease and injury in Aboriginal and Torres Strait Islander Peoples: the Indigenous health gap. Int J Epidemiol. 2009;38:470–7.

    Article  PubMed  Google Scholar 

  9. Adams SM, Crisamore KR, Empey PE. Clinical pharmacogenomics: applications in nephrology. Clin J Am Soc Nephrol. 2018;13:1561–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Thynne T, Gabb GM. Therapeutic drug safety for Indigenous Australians: how do we close the gap? Med J Aust. 2016;204:16–7.

    Article  PubMed  Google Scholar 

  11. National Centre for Indigenous Genomics Statute 2016, Pub. L. No. F2016L01873(2 DECEMBER 2016, 2016). Accesible at https://www.legislation.gov.au/Details/F2016L01873/Download.

  12. National Centre for Indigenous Genomics. Governance Framework. (2018). Available online at: https://ncig.anu.edu.au/files/NCIG Governance Framework.pdf. (accessed June 25, 2020).

  13. Somogyi AA, Barratt DT, Phillips EJ, Moore K, Ilyas F, Gabb GM. High and variable population prevalence of HLA-B*56:02 in indigenous Australians and relation to phenytoin-associated drug reaction with eosinophilia and systemic symptoms. Br J Clin Pharmacol. 2019;85:2163–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Griese EU, Ilett KF, Kitteringham NR, Eichelbaum M, Powell H, Spargo RM, et al. Allele and genotype frequencies of polymorphic cytochromes P4502D6, 2C19 and 2E1 in aborigines from western Australia. Pharmacogenetics. 2001;11:69–76.

    Article  CAS  PubMed  Google Scholar 

  15. Relling MV, Klein TE. CPIC: clinical pharmacogenetics implementation consortium of the pharmacogenomics research network. Clin Pharmacol Ther. 2011;89:464–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Thomson RJ, McMorran B, Hoy W, Jose M, Whittock L, Thornton T, et al. New genetic loci associated with chronic kidney disease in an indigenous Australian population. Front Genet. 2019;10:330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Genomes Project C, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature. 2015;526:68–74.

    Article  Google Scholar 

  18. Mondal M, Casals F, Xu T, Dall’Olio GM, Pybus M, Netea MG, et al. Genomic analysis of Andamanese provides insights into ancient human migration into Asia and adaptation. Nat Genet. 2016;48:1066–70.

    Article  CAS  PubMed  Google Scholar 

  19. Mallick S, Li H, Lipson M, Mathieson I, Gymrek M, Racimo F, et al. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature. 2016;538:201–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43:491–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Freed D, Aldana R, Weber JA, Edwards JS. The Sentieon Genomics Tools - A fast and accurate solution to variant calling from next-generation sequence data. bioRxiv; 2017. https://doi.org/10.1101/115717.

  22. Zhao H, Sun Z, Wang J, Huang H, Kocher JP, Wang L. CrossMap: a versatile tool for coordinate conversion between genome assemblies. Bioinformatics. 2014;30:1006–7.

    Article  PubMed  Google Scholar 

  23. Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27:2987–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Thorn CF, Klein TE, Altman RB. PharmGKB: the pharmacogenomics knowledge base. Methods Mol Biol. 2013;1015:311–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pinsonneault J, Sadee W. Pharmacogenomics of multigenic diseases: sex-specific differences in disease and treatment outcome. AAPS PharmSci. 2003;5:E29.

    Article  PubMed  Google Scholar 

  27. Webster TH, Couse M, Grande BM, Karlins E, Phung TN, Richmond PA, et al. Identifying, understanding, and correcting technical artifacts on the sex chromosomes in next-generation sequencing data. Gigascience. 2019;8:1–15.

  28. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen WM. Robust relationship inference in genome-wide association studies. Bioinformatics. 2010;26:2867–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. R Core Team RFfSC. R: A language and environment for statistical computing Vienna, Austria 2014 [Available from: http://www.R-project.org/].

  31. Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF, et al. Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther. 2012;92:414–7.

    Article  CAS  PubMed  Google Scholar 

  32. Lee SB, Wheeler MM, Thummel KE, Nickerson DA. Calling star alleles with stargazer in 28 pharmacogenes with whole genome sequences. Clin Pharmacol Ther. 2019;106:1328–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46:D1074–D82.

    Article  CAS  PubMed  Google Scholar 

  34. Ng PC, Henikoff S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31:3812–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46:310–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ionita-Laza I, Lee S, Makarov V, Buxbaum JD, Lin X. Sequence kernel association tests for the combined effect of rare and common variants. Am J Hum Genet. 2013;92:841–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lea RA, Roberts RL, Green MR, Kennedy MA, Chambers GK. Allele frequency differences of cytochrome P450 polymorphisms in a sample of New Zealand Maori. N Z Med J. 2008;121:33–7.

    PubMed  Google Scholar 

  39. Theken KN, Lee CR, Gong L, Caudle KE, Formea CM, Gaedigk A, et al. Clinical Pharmacogenetics Implementation Consortium Guideline (CPIC) for CYP2C9 and nonsteroidal anti-inflammatory drugs. Clin Pharmacol Ther. 2020;108:191–200.

    Article  PubMed  Google Scholar 

  40. Owen RP, Gong L, Sagreiya H, Klein TE, Altman RB. VKORC1 pharmacogenomics summary. Pharmacogenet Genomics. 2010;20:642–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. McDonald SP, Wang Z, Hoy WE. Physical and biochemical predictors of death in an Australian aboriginal cohort. Clin Exp Pharmacol Physiol. 1999;26:618–21.

    Article  CAS  PubMed  Google Scholar 

  42. Hoy WE, Wang Z, Baker PR, Kelly AM. Secondary prevention of renal and cardiovascular disease: results of a renal and cardiovascular treatment program in an Australian aboriginal community. J Am Soc Nephrol. 2003;14:S178–85.

    Article  PubMed  Google Scholar 

  43. Tin A, Scharpf R, Estrella MM, Yu B, Grove ML, Chang PP, et al. The loss of GSTM1 associates with kidney failure and heart failure. J Am Soc Nephrol. 2017;28:3345–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chang J, Ma JZ, Zeng Q, Cechova S, Gantz A, Nievergelt C, et al. Loss of GSTM1, a NRF2 target, is associated with accelerated progression of hypertensive kidney disease in the African American Study of Kidney Disease (AASK). Am J Physiol Renal Physiol. 2013;304:F348–55.

    Article  CAS  PubMed  Google Scholar 

  45. Manfredi S, Calvi D, del Fiandra M, Botto N, Biagini A, Andreassi MG. Glutathione S-transferase T1- and M1-null genotypes and coronary artery disease risk in patients with Type 2 diabetes mellitus. Pharmacogenomics. 2009;10:29–34.

    Article  CAS  PubMed  Google Scholar 

  46. Datta SK, Kumar V, Pathak R, Tripathi AK, Ahmed RS, Kalra OP, et al. Association of glutathione S-transferase M1 and T1 gene polymorphism with oxidative stress in diabetic and nondiabetic chronic kidney disease. Ren Fail. 2010;32:1189–95.

    Article  CAS  PubMed  Google Scholar 

  47. Nomani H, Hagh-Nazari L, Aidy A, Vaisi-Raygani A, Kiani A, Rahimi Z, et al. Association between GSTM1, GSTT1, and GSTP1 variants and the risk of end stage renal disease. Ren Fail. 2016;38:1455–61.

    Article  CAS  PubMed  Google Scholar 

  48. Suvakov S, Damjanovic T, Stefanovic A, Pekmezovic T, Savic-Radojevic A, Pljesa-Ercegovac M, et al. Glutathione S-transferase A1, M1, P1 and T1 null or low-activity genotypes are associated with enhanced oxidative damage among haemodialysis patients. Nephrol Dial Transplant. 2013;28:202–12.

    Article  CAS  PubMed  Google Scholar 

  49. Agrawal S, Tripathi G, Khan F, Sharma R, Baburaj VP. Relationship between GSTs gene polymorphism and susceptibility to end stage renal disease among North Indians. Ren Fail. 2007;29:947–53.

    Article  CAS  PubMed  Google Scholar 

  50. (RCPA) TRCoPA. Utilisation of pharmacogenetics in healthcare. 2018. Accesible online at https://www.rcpa.edu.au/Library/College-Policies/Position-Statements/Utilisation-of-pharmacogenetics-in-healthcare.

  51. Trent RJ, Cheong PL, Chua EW, Kennedy MA. Progressing the utilisation of pharmacogenetics and pharmacogenomics into clinical care. Pathology. 2013;45:357–70.

    Article  CAS  PubMed  Google Scholar 

  52. Griese EU, et al. Allele and genotype frequencies of polymorphic cytochromes P4502D6, 2C19 and 2E1 in aborigines from western Australia. Pharmacogenetics. 2001;11:69–76.

    Article  CAS  PubMed  Google Scholar 

  53. Lea RA, Roberts RL, Green MR, Kennedy MA, Chambers GK. Allele frequency differences of cytochrome P450 polymorphisms in a sample of New Zealand Maori. N Z Med J. 2008;121:33–7.

    PubMed  Google Scholar 

  54. Desta Z, Gammal RS, Gong L, Whirl-Carrillo M, Gaur AH, Sukasem C, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2B6 and Efavirenz-Containing Antiretroviral Therapy. Clin Pharmacol Ther. 2019;106:726–33.

    Article  PubMed  Google Scholar 

  55. Scott SA, Sangkuhl K, Stein CM, Hulot JS, Mega JL, Roden DM, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for CYP2C19 genotype and clopidogrel therapy: 2013 update. Clin Pharmacol Ther. 2013;94:317–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Group DDPW. DPWG Pharmacogenetic guidelines Aug 2019. 2019. Drug recommendation compilation (English) Accessible online at https://www.knmp.nl/downloads/pharmacogenetic-recommendations-3mei2021.pdf.

  57. Moriyama B, Obeng AO, Barbarino J, Penzak SR, Henning SA, Scott SA, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for CYP2C19 and voriconazole therapy. Clin Pharmacol Ther. 2017;102:45–51.

    Article  CAS  PubMed  Google Scholar 

  58. Caudle KE, Rettie AE, Whirl-Carrillo M, Smith LH, Mintzer S, Lee MT, et al. Clinical pharmacogenetics implementation consortium guidelines for CYP2C9 and HLA-B genotypes and phenytoin dosing. Clin Pharmacol Ther. 2014;96:542–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Theken KN, Lee CR, Gong L, Caudle KE, Formea CM, Gaedigk A, et al. Clinical Pharmacogenetics Implementation Consortium Guideline (CPIC) for CYP2C9 and nonsteroidal anti-inflammatory drugs. Clin Pharmacol Ther. 2020;108:191–200.

    Article  PubMed  Google Scholar 

  60. Brown JT, Bishop JR, Sangkuhl K, Nurmi EL, Mueller DJ, Dinh JC, et al. Clinical Pharmacogenetics Implementation Consortium Guideline for cytochrome P450 (CYP)2D6 genotype and atomoxetine therapy. Clin Pharmacol Ther. 2019;106:94–102.

    Article  PubMed  Google Scholar 

  61. Crews KR, Gaedigk A, Dunnenberger HM, Leeder JS, Klein TE, Caudle KE, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for cytochrome P450 2D6 genotype and codeine therapy: 2014 update. Clin Pharmacol Ther. 2014;95:376–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Goetz MP, Sangkuhl K, Guchelaar HJ, Schwab M, Province M, Whirl-Carrillo M, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6 and tamoxifen therapy. Clin Pharmacol Ther. 2018;103:770–7.

    Article  PubMed  Google Scholar 

  63. Bell GC, Caudle KE, Whirl-Carrillo M, Gordon RJ, Hikino K, Prows CA, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6 genotype and use of ondansetron and tropisetron. Clin Pharmacol Ther. 2017;102:213–8.

    Article  CAS  PubMed  Google Scholar 

  64. Birdwell KA, Decker B, Barbarino JM, Peterson JF, Stein CM, Sadee W, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for CYP3A5 Genotype and Tacrolimus Dosing. Clin Pharmacol Ther. 2015;98:19–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Amstutz U, Henricks LM, Offer SM, Barbarino J, Schellens JHM, Swen JJ, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for dihydropyrimidine dehydrogenase genotype and fluoropyrimidine dosing: 2017 update. Clin Pharmacol Ther. 2018;103:210–6.

    Article  CAS  PubMed  Google Scholar 

  66. Muir AJ, Gong L, Johnson SG, Lee MT, Williams MS, Klein TE, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for IFNL3 (IL28B) genotype and PEG interferon-alpha-based regimens. Clin Pharmacol Ther. 2014;95:141–6.

    Article  CAS  PubMed  Google Scholar 

  67. Ramsey LB, Johnson SG, Caudle KE, Haidar CE, Voora D, Wilke RA, et al. The clinical pharmacogenetics implementation consortium guideline for SLCO1B1 and simvastatin-induced myopathy: 2014 update. Clin Pharmacol Ther. 2014;96:423–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. US FDA FaDA. US FDA Drug label for Diazepam, Reference number: 4029527. 2017. Accessible online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/020648s014lbl.pdf.

  69. Swissmedic. Swissmedic Label for Losartan. 2018. English version accesible online: https://www.pharmgkb.org/labelAnnotation/PA166184388. Original version: https://amiko.oddb.org/de/fi?gtin=52904&highlight=genetisch.

  70. Hicks JK, Bishop JR, Sangkuhl K, Muller DJ, Ji Y, Leckband SG, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6 and CYP2C19 genotypes and dosing of selective serotonin reuptake inhibitors. Clin Pharmacol Ther. 2015;98:127–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hicks JK, Sangkuhl K, Swen JJ, Ellingrod VL, Muller DJ, Shimoda K, et al. Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update. Clin Pharmacol Ther. 2017;102:37–44.

    Article  CAS  PubMed  Google Scholar 

  72. Johnson JA, Caudle KE, Gong L, Whirl-Carrillo M, Stein CM, Scott SA, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for pharmacogenetics-guided warfarin dosing: 2017 update. Clin Pharmacol Ther. 2017;102:397–404.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the following people: Barry Ullungurra for his help as the key contact person with the Tiwi Islanders; Bev Mcleod and Ceri Flowers for their project management and sample and data collection; Maria Scarlett for her considerable advice and guidance on the ethics of this project; and Beverley Hayhurst for the original sample collection and most notably the study participants and the Tiwi Land Council for their time and ongoing support for this project.

Funding

Funding for this research was supported by grants from the National Health and Medical Research Council (GNT1024207) and MRFF Genomics Health Futures Mission (76757). The Centre for Chronic Disease, The University of Queensland, is supported in-part by the NHMRC, Chronic Kidney Disease Centre of Research Excellence, 2016–2020 (APP1079502). The National Centre for Indigenous Genomics’ genome sequencing programme is supported by grants from the Australian Genomics Health Alliance, the Australian Research Data Commons (ARDC), Bio-platforms Australia (BPA), the Canberra Medical Society, the National Computational Infrastructure (NCI) through their ANU and National Merit Allocation Schemes, and the NHMRC (GNT1143734).

Author information

Authors and Affiliations

Authors

Contributions

SHN led the project and oversaw the analysis. AJS designed and performed the research. AJS and SHN prepared the first draft of the manuscript. SJ assisted in curation and analysis of genome data. VS, HRP and BM contributed to the data analysis and refining the manuscript. WH, SJF provided critical intellectual comments during the manuscript writing and revisions. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Shivashankar H. Nagaraj.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaya Shankar, A., Jadhao, S., Hoy, W. et al. Pharmacogenomic analysis of a genetically distinct Indigenous population. Pharmacogenomics J 22, 100–108 (2022). https://doi.org/10.1038/s41397-021-00262-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-021-00262-4

This article is cited by

Search

Quick links