Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Review
  • Published:

Microwave impedance microscopy and its application to quantum materials

Abstract

Materials in which quantum mechanical effects lead to novel properties on the macroscopic scale are of interest both fundamentally and for applications. For such quantum materials, the ability to measure local conductivity and permittivity with nanoscale spatial resolution, minimal sample preparation, in a contact-free fashion and under a wide range of external conditions (such as temperature and magnetic field) is highly desirable. To this end, microwave impedance microscopy, a scanning probe technique that measures tip–sample admittance (inverse of impedance) in a non-contact geometry at microwave frequencies, has matured over the past decade to become a tool that can do just that. This Technical Review describes its fundamental working principles and practical implementations, discusses its application to a wide range of quantum materials, including correlated, topological and 2D van der Waals materials, and outlines future opportunities in expanding the capabilities of microwave impedance microscopy.

Key points

  • Microwave impedance microscopy (MIM) probes local conductivity and permittivity by measuring the admittance between a sharp tip and the sample at microwave frequencies. It enables contact-free and electrode-free local measurements of buried samples, and is, thus, highly complementary to more established techniques.

  • Typically, MIM measures variations of the system’s complex reflection coefficient, which are proportional to variations in tip–sample admittance; local conductivity/permittivity can then be inferred with finite element analysis.

  • By working in the near-field regime, MIM achieves spatial resolution down to <50 nm, far below the diffraction limit.

  • MIM led to the understanding of important phenomena in quantum materials, including phase separation and relaxation in correlated systems, boundary and interface states in topological systems, and in materials ranging from 3D bulk to thin films to 2D van der Waals materials.

  • We expect significant developments in the scope and applications of MIM in the near future by fully utilizing so far less explored degrees of freedom, including continuous frequency tuning, nonlinear operation and coupling of external stimuli, such as optical excitation and sample strain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microwave circuit and signal contrast.
Fig. 2: Microwave impedance microscopy studies of emerging electronic states at order-parameter domain walls and glassy behaviour of phase separation.
Fig. 3: Microwave impedance microscopy studies of correlated phases in van der Waals moiré superlattices.
Fig. 4: Microwave impedance microscopy studies of the integer quantum Hall effect in graphene.
Fig. 5: Microwave impedance microscopy studies of the quantum spin Hall effect.
Fig. 6: Microwave impedance microscopy studies of the quantum anomalous Hall effect in modulation-doped Cr-(Bi,Sb)2Te3.

Similar content being viewed by others

References

  1. Giustino, F. et al. The 2021 quantum materials roadmap. J. Phys. Mater. 3, 042006 (2021).

    Article  Google Scholar 

  2. Keimer, B. & Moore, J. E. The physics of quantum materials. Nat. Phys. 13, 1045–1055 (2017).

    Article  Google Scholar 

  3. Broholm, C. et al. Basic Research Needs Workshop on Quantum Materials for Energy Relevant Technology (USDOE Office of Science (SC), Basic Energy Sciences (BES), 2016).

  4. Moler, K. A. Imaging quantum materials. Nat. Mater. 16, 1049–1052 (2017).

    Article  ADS  Google Scholar 

  5. Kalinin, S. V. & Gruverman, A. Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale (Springer, 2007).

  6. Voigtländer, B. Scanning Probe Microscopy: Atomic Force Microscopy and Scanning Tunneling Microscopy (Springer, 2015).

  7. Liu, M., Sternbach, A. J. & Basov, D. N. Nanoscale electrodynamics of strongly correlated quantum materials. Rep. Prog. Phys. 80, 014501 (2016).

    Article  ADS  Google Scholar 

  8. Chen, X. et al. Modern scattering-type scanning near-field optical microscopy for advanced material research. Adv. Mater. 31, 1804774 (2019).

    Article  Google Scholar 

  9. Fee, M., Chu, S. & Hänsch, T. W. Scanning electromagnetic transmission line microscope with sub-wavelength resolution. Opt. Commun. 69, 219–224 (1989).

    Article  ADS  Google Scholar 

  10. Anlage, S. M., Steinhauer, D. E., Feenstra, B. J., Vlahacos, C. P. & Wellstood, F. C. in Microwave Superconductivity (eds Weinstock, H. & Nisenoff, M.) 239–269 (Springer, 2001).

  11. Xiang, X.-D. & Gao, C. Quantitative complex electrical impedance microscopy by scanning evanescent microwave microscope. Mater. Charact. 48, 117–125 (2002).

    Article  Google Scholar 

  12. Wang, Z. et al. Quantitative measurement of sheet resistance by evanescent microwave probe. Appl. Phys. Lett. 86, 153118 (2005).

    Article  ADS  Google Scholar 

  13. Anlage, S. M., Talanov, V. V. & Schwartz, A. R. in Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale (eds Kalinin, S. & Gruverman, A.) 215–253 (Springer, 2007).

  14. Lai, K., Kundhikanjana, W., Kelly, M. A. & Shen, Z.-X. Nanoscale microwave microscopy using shielded cantilever probes. Appl. Nanosci. 1, 13–18 (2011).

    Article  ADS  Google Scholar 

  15. Cui, Y.-T. & Ma, E. Y. in Capacitance Spectroscopy of Semiconductors (eds Li, J. V. & Ferrari, G.) 411–435 (Jenny Stanford Publishing, 2018).

  16. Rubin, K. A., Yang, Y., Amster Y., Scrymgeour, D. A. & Misra, S. in Electrical Atomic Force Microscopy for Nanoelectronics (ed. Celano, U.) 385–408 (Springer, 2019).

  17. Chu, Z., Zheng, L. & Lai, K. Microwave microscopy and its applications. Annu. Rev. Mater. Res. 50, 105–130 (2020).

    Article  ADS  Google Scholar 

  18. Yang, Y. et al. Batch-fabricated cantilever probes with electrical shielding for nanoscale dielectric and conductivity imaging. J. Micromech. Microeng. 22, 115040 (2012).

    Article  Google Scholar 

  19. Cui, Y.-T., Ma, E. Y. & Shen, Z.-X. Quartz tuning fork based microwave impedance microscopy. Rev. Sci. Instrum. 87, 063711 (2016).

    Article  ADS  Google Scholar 

  20. Lai, K., Kundhikanjana, W., Kelly, M. & Shen, Z.-X. Modeling and characterization of a cantilever-based near-field scanning microwave impedance microscope. Rev. Sci. Instrum. 79, 063703 (2008).

    Article  ADS  Google Scholar 

  21. Lai, K., Kundhikanjana, W., Kelly, M. A. & Shen, Z.-X. Calibration of shielded microwave probes using bulk dielectrics. Appl. Phys. Lett. 93, 123105 (2008).

    Article  ADS  Google Scholar 

  22. Allen, M. et al. Visualization of an axion insulating state at the transition between 2 chiral quantum anomalous Hall states. Proc. Natl Acad. Sci. USA 116, 14511–14515 (2019).

    Article  ADS  Google Scholar 

  23. Ma, E. Y. et al. Charge-order domain walls with enhanced conductivity in a layered manganite. Nat. Commun. 6, 7595 (2015).

    Article  ADS  Google Scholar 

  24. Wu, X. et al. Low-energy structural dynamics of ferroelectric domain walls in hexagonal rare-earth manganites. Sci. Adv. 3, e1602371 (2017).

    Article  ADS  Google Scholar 

  25. Kent, P. R. C. & Kotliar, G. Toward a predictive theory of correlated materials. Science 361, 348–354 (2018).

    Article  ADS  Google Scholar 

  26. Campi, G. et al. Inhomogeneity of charge-density-wave order and quenched disorder in a high-Tc superconductor. Nature 525, 359–362 (2015).

    Article  ADS  Google Scholar 

  27. Ma, E. Y. et al. Mobile metallic domain walls in an all-in-all-out magnetic insulator. Science 350, 538–541 (2015).

    Article  ADS  Google Scholar 

  28. Matsuhira, K., Wakeshima, M., Hinatsu, Y. & Takagi, S. Metal–insulator transitions in pyrochlore oxides Ln2Ir2O7. J. Phys. Soc. Jpn. 80, 094701 (2011).

    Article  ADS  Google Scholar 

  29. Ueda, K. et al. Variation of charge dynamics in the course of metal-insulator transition for pyrochlore-type Nd2Ir2O7. Phys. Rev. Lett. 109, 136402 (2012).

    Article  ADS  Google Scholar 

  30. Ueda, K. et al. Anomalous domain-wall conductance in pyrochlore-type Nd2Ir2O7 on the verge of the metal-insulator transition. Phys. Rev. B 89, 075127 (2014).

    Article  ADS  Google Scholar 

  31. Tardif, S. et al. All-in–all-out magnetic domains: X-ray diffraction imaging and magnetic field control. Phys. Rev. Lett. 114, 147205 (2015).

    Article  ADS  Google Scholar 

  32. Lai, K. et al. Mesoscopic percolating resistance network in a strained manganite thin film. Science 329, 190–193 (2010).

    Article  ADS  Google Scholar 

  33. Kundhikanjana, W. et al. Direct imaging of dynamic glassy behavior in a strained manganite film. Phys. Rev. Lett. 115, 265701 (2015).

    Article  ADS  Google Scholar 

  34. Song, J. C. W. & Gabor, N. M. Electron quantum metamaterials in van der Waals heterostructures. Nat. Nanotechnol. 13, 986–993 (2018).

    Article  ADS  Google Scholar 

  35. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  ADS  Google Scholar 

  36. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article  ADS  Google Scholar 

  37. Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    Article  ADS  Google Scholar 

  38. Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).

    Article  ADS  Google Scholar 

  39. Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020).

    Article  ADS  Google Scholar 

  40. Chu, Z. et al. Nanoscale conductivity imaging of correlated electronic states in WSe2/WS2 moiré superlattices. Phys. Rev. Lett. 125, 186803 (2020).

    Article  ADS  Google Scholar 

  41. Huang, X. et al. Correlated insulating states at fractional fillings of the WS2/WSe2 moiré lattice. Nat. Phys. 17, 715–719 (2021).

    Article  Google Scholar 

  42. Cui, Y.-T. et al. Unconventional correlation between quantum Hall transport quantization and bulk state filling in gated graphene devices. Phys. Rev. Lett. 117, 186601 (2016).

    Article  ADS  Google Scholar 

  43. Lee, K. et al. Ultrahigh-resolution scanning microwave impedance microscopy of moiré lattices and superstructures. Sci. Adv. 6, eabd1919 (2020).

    Article  ADS  Google Scholar 

  44. Ohlberg, D. A. A. et al. Observation of moiré superlattices on twisted bilayer graphene by scanning microwave impedance microscopy. Proc. SPIE Abstr. 11465 (2020).

  45. Huang, X. et al. Imaging dual-moiré lattices in twisted bilayer graphene aligned on hexagonal boron nitride using microwave impedance microscopy. Nano Lett. 21, 4292–4298 (2021).

    Article  ADS  Google Scholar 

  46. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article  ADS  Google Scholar 

  47. Bansil, A., Lin, H. & Das, T. Colloquium: Topological band theory. Rev. Mod. Phys. 88, 021004 (2016).

    Article  ADS  Google Scholar 

  48. Wen, X.-G. Colloquium: Zoo of quantum-topological phases of matter. Rev. Mod. Phys. 89, 041004 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  49. Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  50. Klitzing, K. V., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    Article  ADS  Google Scholar 

  51. Weis, J. & von Klitzing, K. Metrology and microscopic picture of the integer quantum Hall effect. Philos. Trans. R. Soc. A 369, 3954–3974 (2011).

    Article  ADS  Google Scholar 

  52. Wei, Y. Y., Weis, J., Klitzing, K. V. & Eberl, K. Edge strips in the quantum Hall regime imaged by a single-electron transistor. Phys. Rev. Lett. 81, 1674–1677 (1998).

    Article  ADS  Google Scholar 

  53. McCormick, K. L. et al. Scanned potential microscopy of edge and bulk currents in the quantum Hall regime. Phys. Rev. B 59, 4654–4657 (1999).

    Article  ADS  Google Scholar 

  54. Yacoby, A., Hess, H. F., Fulton, T. A., Pfeiffer, L. N. & West, K. W. Electrical imaging of the quantum Hall state. Solid State Commun. 111, 1–13 (1999).

    Article  ADS  Google Scholar 

  55. Finkelstein, G., Glicofridis, P. I., Tessmer, S. H., Ashoori, R. C. & Melloch, M. R. Imaging of low-compressibility strips in the quantum Hall liquid. Phys. Rev. B 61, R16323–R16326 (2000).

    Article  ADS  Google Scholar 

  56. Finkelstein, G., Glicofridis, P. I., Ashoori, R. C. & Shayegan, M. Topographic mapping of the quantum Hall liquid using a few-electron bubble. Science 289, 90–94 (2000).

    Article  ADS  Google Scholar 

  57. Woodside, M. T. et al. Imaging interedge-state scattering centers in the quantum Hall regime. Phys. Rev. B 64, 041310 (2001).

    Article  ADS  Google Scholar 

  58. Glicofridis, P. I., Finkelstein, G., Ashoori, R. C. & Shayegan, M. Determination of the resistance across incompressible strips through imaging of charge motion. Phys. Rev. B 65, 121312 (2002).

    Article  ADS  Google Scholar 

  59. Ilani, S. et al. The microscopic nature of localization in the quantum Hall effect. Nature 427, 328–332 (2004).

    Article  ADS  Google Scholar 

  60. Aoki, N., da Cunha, C. R., Akis, R., Ferry, D. K. & Ochiai, Y. Imaging of integer quantum Hall edge state in a quantum point contact via scanning gate microscopy. Phys. Rev. B 72, 155327 (2005).

    Article  ADS  Google Scholar 

  61. Lai, K. et al. Imaging of Coulomb-driven quantum Hall edge states. Phys. Rev. Lett. 107, 176809 (2011).

    Article  ADS  Google Scholar 

  62. Halperin, B. I. Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B 25, 2185–2190 (1982).

    Article  ADS  Google Scholar 

  63. Chklovskii, D. B., Shklovskii, B. I. & Glazman, L. I. Electrostatics of edge channels. Phys. Rev. B 46, 4026–4034 (1992).

    Article  ADS  Google Scholar 

  64. Chamon, Cd. C. & Wen, X. G. Sharp and smooth boundaries of quantum Hall liquids. Phys. Rev. B 49, 8227–8241 (1994).

    Article  ADS  Google Scholar 

  65. Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    Article  ADS  Google Scholar 

  66. Novoselov, K. S. et al. Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene. Nat. Phys. 2, 177–180 (2006).

    Article  Google Scholar 

  67. Lafont, F. et al. Quantum Hall resistance standards from graphene grown by chemical vapour deposition on silicon carbide. Nat. Commun. 6, 6806 (2015).

    Article  ADS  Google Scholar 

  68. Park, J., Kim, W.-S. & Chae, D.-H. Realization of 5h/e2 with graphene quantum Hall resistance array. Appl. Phys. Lett. 116, 093102 (2020).

    Article  ADS  Google Scholar 

  69. Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    Article  ADS  Google Scholar 

  70. Liu, C., Hughes, T. L., Qi, X.-L., Wang, K. & Zhang, S.-C. Quantum spin Hall effect in inverted type-II semiconductors. Phys. Rev. Lett. 100, 236601 (2008).

    Article  ADS  Google Scholar 

  71. Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).

    Article  ADS  Google Scholar 

  72. Li, T. et al. Observation of a helical Luttinger liquid in InAs/GaSb quantum spin Hall edges. Phys. Rev. Lett. 115, 136804 (2015).

    Article  ADS  Google Scholar 

  73. Nichele, F. et al. Edge transport in the trivial phase of InAs/GaSb. New J. Phys. 18, 083005 (2016).

    Article  ADS  Google Scholar 

  74. Tang, S. et al. Quantum spin Hall state in monolayer 1T′-WTe2. Nat. Phys. 13, 683–687 (2017).

    Article  Google Scholar 

  75. Wu, S. et al. Observation of the quantum spin Hall effect up to 100 Kelvin in a monolayer crystal. Science 359, 76–79 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. Ma, E. Y. et al. Unexpected edge conduction in mercury telluride quantum wells under broken time-reversal symmetry. Nat. Commun. 6, 7252 (2015).

    Article  ADS  Google Scholar 

  77. Shi, Y. et al. Imaging quantum spin Hall edges in monolayer WTe2. Sci. Adv. 5, eaat8799 (2019).

    Article  ADS  Google Scholar 

  78. König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article  ADS  Google Scholar 

  79. Swarts, C. A., Daw, M. S. & McGill, T. C. Bulk vacancies in CdxHg1−xTe. J. Vac. Sci. Technol. 21, 198–200 (1982).

    Article  ADS  Google Scholar 

  80. Chou, Y.-Z., Nandkishore, R. M. & Radzihovsky, L. Gapless insulating edges of dirty interacting topological insulators. Phys. Rev. B 98, 054205 (2018).

    Article  ADS  Google Scholar 

  81. Chen, Z. & Ng, T. K. Interaction-induced edge states in HgTe/CdTe quantum wells under a magnetic field. Phys. Rev. B 99, 235157 (2019).

    Article  ADS  Google Scholar 

  82. Piatrusha, S. U. et al. Topological protection brought to light by the time-reversal symmetry breaking. Phys. Rev. Lett. 123, 056801 (2019).

    Article  ADS  Google Scholar 

  83. Yahniuk, I. et al. Magneto-transport in inverted HgTe quantum wells. NPJ Quant. Mater. 4, 13 (2019).

    Article  ADS  Google Scholar 

  84. van den Berg, T. L., Calvo, M. R. & Bercioux, D. Living on the edge: Topology, electrostatics, and disorder. Phys. Rev. Res. 2, 013171 (2020).

    Article  Google Scholar 

  85. Jia, Z.-Y. et al. Direct visualization of a two-dimensional topological insulator in the single-layer 1T′-WTe2. Phys. Rev. B 96, 041108 (2017).

    Article  ADS  Google Scholar 

  86. Yu, R. et al. Quantized anomalous Hall effect in magnetic topological insulators. Science 329, 61–64 (2010).

    Article  ADS  Google Scholar 

  87. Wang, J., Lian, B. & Zhang, S.-C. Universal scaling of the quantum anomalous Hall plateau transition. Phys. Rev. B 89, 085106 (2014).

    Article  ADS  Google Scholar 

  88. Liu, C.-X., Zhang, S.-C. & Qi, X.-L. The quantum anomalous Hall effect: theory and experiment. Annu. Rev. Condens. Matter Phys. 7, 301–321 (2016).

    Article  ADS  Google Scholar 

  89. Haldane, F. D. M. Nobel lecture: Topological quantum matter. Rev. Mod. Phys. 89, 040502 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  90. Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    Article  ADS  Google Scholar 

  91. Checkelsky, J. G. et al. Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator. Nat. Phys. 10, 731–736 (2014).

    Article  Google Scholar 

  92. Chang, C.-Z. et al. High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. Nat. Mater. 14, 473–477 (2015).

    Article  ADS  Google Scholar 

  93. Bestwick, A. J. et al. Precise quantization of the anomalous Hall effect near zero magnetic field. Phys. Rev. Lett. 114, 187201 (2015).

    Article  ADS  Google Scholar 

  94. Liu, M. et al. Large discrete jumps observed in the transition between Chern states in a ferromagnetic topological insulator. Sci. Adv. 2, e1600167 (2016).

    Article  ADS  Google Scholar 

  95. Grauer, S. et al. Scaling of the quantum anomalous Hall effect as an indicator of axion electrodynamics. Phys. Rev. Lett. 118, 246801 (2017).

    Article  ADS  Google Scholar 

  96. Mogi, M. et al. Magnetic modulation doping in topological insulators toward higher-temperature quantum anomalous Hall effect. Appl. Phys. Lett. 107, 182401 (2015).

    Article  ADS  Google Scholar 

  97. Mogi, M. et al. A magnetic heterostructure of topological insulators as a candidate for an axion insulator. Nat. Mater. 16, 516–521 (2017).

    Article  ADS  Google Scholar 

  98. Deng, H. et al. High-temperature quantum anomalous Hall regime in a MnBi2Te4/Bi2Te3 superlattice. Nat. Phys. 17, 36–42 (2021).

    Article  Google Scholar 

  99. Liu, X. & Hersam, M. C. 2D materials for quantum information science. Nat. Rev. Mater. 4, 669–684 (2019).

    Article  ADS  Google Scholar 

  100. Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019).

    Article  ADS  Google Scholar 

  101. Rodin, A., Trushin, M., Carvalho, A. & Neto, A. H. C. Collective excitations in 2D materials. Nat. Rev. Phys. 2, 524–537 (2020).

    Article  Google Scholar 

  102. Tsai, Y. et al. Tailoring semiconductor lateral multijunctions for giant photoconductivity enhancement. Adv. Mater. 29, 1703680 (2017).

    Article  Google Scholar 

  103. Chu, Z. et al. Energy-resolved photoconductivity mapping in a monolayer–bilayer WSe2 lateral heterostructure. Nano Lett. 18, 7200–7206 (2018).

    Article  ADS  Google Scholar 

  104. Chu, Z. et al. Unveiling defect-mediated carrier dynamics in monolayer semiconductors by spatiotemporal microwave imaging. Proc. Natl Acad. Sci. USA 117, 13908–13913 (2020).

    Article  ADS  Google Scholar 

  105. Johnston, S. R., Ma, E. Y. & Shen, Z.-X. Optically coupled methods for microwave impedance microscopy. Rev. Sci. Instrum. 89, 043703 (2018).

    Article  ADS  Google Scholar 

  106. Chu, Z. et al. Impact of grain boundaries on efficiency and stability of organic-inorganic trihalide perovskites. Nat. Commun. 8, 2230 (2017).

    Article  ADS  Google Scholar 

  107. Nagaosa, N., Morimoto, T. & Tokura, Y. Transport, magnetic and optical properties of Weyl materials. Nat. Rev. Mater. 5, 621–636 (2020).

    Article  ADS  Google Scholar 

  108. Cho, Y. Scanning Nonlinear Dielectric Microscopy: Investigation of Ferroelectric, Dielectric, and Semiconductor Materials and Devices (Woodhead Publishing, 2020).

  109. Zheng, L. et al. Interferometric imaging of nonlocal electromechanical power transduction in ferroelectric domains. Proc. Natl Acad. Sci. USA 115, 5338–5342 (2018).

    Article  ADS  Google Scholar 

  110. Wu, X. et al. Microwave conductivity of ferroelectric domains and domain walls in a hexagonal rare-earth ferrite. Phys. Rev. B 98, 081409 (2018).

    Article  ADS  Google Scholar 

  111. Huang, Y.-L. et al. Unexpected giant microwave conductivity in a nominally silent BiFeO3 domain wall. Adv. Mater. 32, 1905132 (2020).

    Article  Google Scholar 

  112. Shayegan, M. in Perspectives in Quantum Hall Effects (eds Das Sarma, S. & Pinczuk, A.) 343–384 (Wiley, 1996).

  113. Murrell, M. P. et al. Spatially resolved electrical measurements of SiO2 gate oxides using atomic force microscopy. Appl. Phys. Lett. 62, 786–788 (1993).

    Article  ADS  Google Scholar 

  114. Lanza, M., Conductive Atomic Force Microscopy: Applications in Nanomaterials (Wiley, 2017).

  115. Eriksson, M. A. et al. Cryogenic scanning probe characterization of semiconductor nanostructures. Appl. Phys. Lett. 69, 671–673 (1996).

    Article  ADS  Google Scholar 

  116. Sellier, H. et al. On the imaging of electron transport in semiconductor quantum structures by scanning-gate microscopy: successes and limitations. Semicond. Sci. Technol. 26, 064008 (2011).

    Article  ADS  Google Scholar 

  117. Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57–61 (1982).

    Article  ADS  Google Scholar 

  118. Yazdani, A., da Silva Neto, E. H. & Aynajian, P. Spectroscopic imaging of strongly correlated electronic states. Annu. Rev. Condens. Matter Phys. 7, 11–33 (2016).

    Article  ADS  Google Scholar 

  119. Fujita, K., Hamidian, M. H., Sprau, P. O., Edkins, S. D. & Davis, J. C. S. in Springer Handbook of Microscopy (eds Hawkes, P. W. & Spence, J. C. H.) 1369–1390 (Springer, 2019).

  120. Yin, J.-X., Pan, S. H. & Hasan, M. Z. Probing topological quantum matter with scanning tunnelling microscopy. Nat. Rev. Phys. 3, 249–263 (2021).

    Article  Google Scholar 

  121. Martin, Y., Abraham, D. W. & Wickramasinghe, H. K. High-resolution capacitance measurement and potentiometry by force microscopy. Appl. Phys. Lett. 52, 1103–1105 (1988).

    Article  ADS  Google Scholar 

  122. Girard, P. Electrostatic force microscopy: principles and some applications to semiconductors. Nanotechnology 12, 485–490 (2001).

    Article  ADS  Google Scholar 

  123. Nonnenmacher, M., O’Boyle, M. P. & Wickramasinghe, H. K. Kelvin probe force microscopy. Appl. Phys. Lett. 58, 2921–2923 (1991).

    Article  ADS  Google Scholar 

  124. Melitz, W., Shen, J., Kummel, A. C. & Lee, S. Kelvin probe force microscopy and its application. Surf. Sci. Rep. 66, 1–27 (2011).

    Article  ADS  Google Scholar 

  125. Sadewasser, S. & Glatzel, T. Kelvin Probe Force Microscopy: From Single Charge Detection to Device Characterization (Springer, 2018).

  126. Matey, J. R. & Blanc, J. Scanning capacitance microscopy. J. Appl. Phys. 57, 1437–1444 (1985).

    Article  ADS  Google Scholar 

  127. Kopanski, J. J. in Encyclopedia of Imaging Science and Technology (ed Hornak, J. P.) (Wiley 2002).

  128. Cho, Y., Kirihara, A. & Saeki, T. Scanning nonlinear dielectric microscope. Rev. Sci. Instrum. 67, 2297–2303 (1996).

    Article  ADS  Google Scholar 

  129. Yoo, M. J. et al. Scanning single-electron transistor microscopy: imaging individual charges. Science 276, 579–582 (1997).

    Article  Google Scholar 

  130. Honig, M. et al. Local electrostatic imaging of striped domain order in LaAlO3/SrTiO3. Nat. Mater. 12, 1112–1118 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank M. A. Kelly, K. Lai, Y.-T. Cui, M. T. Allen, X. D. Chen, Z. Y. Wang, S. R. Johnston, K. J. Xu and Z. Wei for fruitful collaborations. They thank K. J. Xu, Y.-T. Cui and K. Lai for their comments. M.E.B is supported as part of the QSQM, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under award DE-SC0021238, and the Marvin Chodorow Postdoctoral Fellowships of Stanford University. This research is also funded by the Gordon and Betty Moore Foundation’s EPiQS Initiative through grant GBMF4546 (Z.-X.S.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Zhi-Xun Shen.

Ethics declarations

Competing interests

Z.-X.S. is a co-founder of PrimeNano Inc., which licensed the microwave impedance microscopy technology from Stanford University for commercial instruments.

Additional information

Peer review information

Nature Reviews Physics thanks Weida Wu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

COMSOL AB. COMSOL Multiphysics® 5.3: https://www.comsol.com/release/5.3a

PrimeNano Inc.: https://www.primenanoinc.com/

Rocky Mountain Nanotechnology: https://rmnano.com/

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barber, M.E., Ma, E.Y. & Shen, ZX. Microwave impedance microscopy and its application to quantum materials. Nat Rev Phys 4, 61–74 (2022). https://doi.org/10.1038/s42254-021-00386-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-021-00386-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing