Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

STEM CELL TRANSPLANTATION

Allogeneic blood or marrow transplantation with haploidentical donor and post-transplantation cyclophosphamide in patients with myelofibrosis: a multicenter study

Abstract

We report the results from a multicenter retrospective study of 69 adult patients who underwent haploidentical blood or marrow transplantation (haplo-BMT) with post-transplantation cyclophosphamide (PTCy) for chronic phase myelofibrosis. The median age at BMT was 63 years (range, 41–74). Conditioning regimens were reduced intensity in 54% and nonmyeloablative in 39%. Peripheral blood grafts were used in 86%. The median follow-up was 23.1 months (range, 1.6–75.7). At 3 years, the overall survival, relapse-free survival (RFS), and graft-versus-host-disease (GVHD)-free-RFS were 72% (95% CI 59–81), 44% (95% CI 29–59), and 30% (95% CI 17–43). Cumulative incidences of non-relapse mortality and relapse were 23% (95% CI 14–34) and 31% (95% CI 17–47) at 3 years. Spleen size ≥22 cm or prior splenectomy (HR 6.37, 95% CI 2.02–20.1, P = 0.002), and bone marrow grafts (HR 4.92, 95% CI 1.68–14.4, P = 0.004) were associated with increased incidence of relapse. Cumulative incidence of acute GVHD grade 3–4 was 10% at 3 months and extensive chronic GVHD was 8%. Neutrophil engraftment was reported in 94% patients, at a median of 20 days (range, 14–70). In conclusion, haplo-BMT with PTCy is feasible in patients with myelofibrosis. Splenomegaly ≥22 cm and bone marrow grafts were associated with a higher incidence of relapse in this study.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Estimates of outcomes.
Fig. 2: Patient and BMT characteristics associated with relapse.

Similar content being viewed by others

References

  1. Cervantes F. How I treat myelofibrosis. Blood. 2014;124:2635–42.

    Article  CAS  PubMed  Google Scholar 

  2. Gangat N, Caramazza D, Vaidya R, George G, Begna K, Schwager S, et al. DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol. 2011;29:392–7.

    Article  PubMed  Google Scholar 

  3. Harrison C, Kiladjian JJ, Al-Ali HK, Gisslinger H, Waltzman R, Stalbovskaya V, et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N. Engl J Med. 2012;366:787–98.

    Article  CAS  PubMed  Google Scholar 

  4. Harrison CN, Schaap N, Vannucchi AM, Kiladjian JJ, Tiu RV, Zachee P, et al. Janus kinase-2 inhibitor fedratinib in patients with myelofibrosis previously treated with ruxolitinib (JAKARTA-2): a single-arm, open-label, non-randomised, phase 2, multicentre study. Lancet Haematol. 2017;4:e317–24.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pardanani A, Harrison C, Cortes JE, Cervantes F, Mesa RA, Milligan D, et al. Safety and Efficacy of Fedratinib in Patients With Primary or Secondary Myelofibrosis: A Randomized Clinical Trial. JAMA Oncol. 2015;1:643–51.

    Article  PubMed  Google Scholar 

  6. Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N. Engl J Med. 2012;366:799–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jain T, Mesa RA, Palmer JM. Allogeneic stem cell transplantation in myelofibrosis. Biol Blood Marrow Transpl. 2017;23:1429–36.

    Article  CAS  Google Scholar 

  8. McLornan DP, Yakoub-Agha I, Robin M, Chalandon Y, Harrison CN, Kroger N. State-of-the-art review: allogeneic stem cell transplantation for myelofibrosis in 2019. Haematologica. 2019;104:659–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gowin K, Ballen K, Ahn KW, Hu ZH, Ali H, Arcasoy MO, et al. Survival following allogeneic transplant in patients with myelofibrosis. Blood Adv. 2020;4:1965–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kroger NM, Deeg JH, Olavarria E, Niederwieser D, Bacigalupo A, Barbui T, et al. Indication and management of allogeneic stem cell transplantation in primary myelofibrosis: a consensus process by an EBMT/ELN international working group. Leukemia. 2015;29:2126–33.

    Article  CAS  PubMed  Google Scholar 

  11. Robin M, de Wreede LC, Wolschke C, Schetelig J, Eikema DJ, Van Lint MT, et al. Long-term outcome after allogeneic hematopoietic cell transplantation for myelofibrosis. Haematologica. 2019;104:1782–8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mesa RA, Silverstein MN, Jacobsen SJ, Wollan PC, Tefferi A. Population-based incidence and survival figures in essential thrombocythemia and agnogenic myeloid metaplasia: an Olmsted County Study, 1976–95. Am J Hematol. 1999;61:10–5.

    Article  CAS  PubMed  Google Scholar 

  13. Keyzner A, Han S, Shapiro S, Moshier E, Schorr E, Petersen B, et al. Outcome of allogeneic hematopoietic stem cell transplantation for patients with chronic and advanced phase myelofibrosis. Biol Blood Marrow Transpl. 2016;22:2180–6.

    Article  Google Scholar 

  14. Slot S, Smits K, van de Donk NW, Witte BI, Raymakers R, Janssen JJ, et al. Effect of conditioning regimens on graft failure in myelofibrosis: a retrospective analysis. Bone Marrow Transpl. 2015;50:1424–31.

    Article  CAS  Google Scholar 

  15. Ballen KK, Shrestha S, Sobocinski KA, Zhang MJ, Bashey A, Bolwell BJ, et al. Outcome of transplantation for myelofibrosis. Biol Blood Marrow Transpl. 2010;16:358–67.

    Article  Google Scholar 

  16. Gupta V, Malone AK, Hari PN, Ahn KW, Hu ZH, Gale RP, et al. Reduced-intensity hematopoietic cell transplantation for patients with primary myelofibrosis: a cohort analysis from the center for international blood and marrow transplant research. Biol Blood Marrow Transpl. 2014;20:89–97.

    Article  Google Scholar 

  17. Rondelli D, Goldberg JD, Isola L, Price LS, Shore TB, Boyer M, et al. MPD-RC 101 prospective study of reduced-intensity allogeneic hematopoietic stem cell transplantation in patients with myelofibrosis. Blood. 2014;124:1183–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hale GA. Perspective on the role of haploidentical transplantation in the management of hematologic malignancies: why do it? Curr Hematol Malig Rep. 2007;2:202–7.

    Article  PubMed  Google Scholar 

  19. Henslee-Downey PJ. Allogeneic transplantation across major HLA barriers. Best Pr Res Clin Haematol. 2001;14:741–54.

    Article  CAS  Google Scholar 

  20. Szydlo R, Goldman JM, Klein JP, Gale RP, Ash RC, Bach FH, et al. Results of allogeneic bone marrow transplants for leukemia using donors other than HLA-identical siblings. J Clin Oncol. 1997;15:1767–77.

    Article  CAS  PubMed  Google Scholar 

  21. Bolanos-Meade J, Reshef R, Fraser R, Fei M, Abhyankar S, Al-Kadhimi Z, et al. Three prophylaxis regimens (tacrolimus, mycophenolate mofetil, and cyclophosphamide; tacrolimus, methotrexate, and bortezomib; or tacrolimus, methotrexate, and maraviroc) versus tacrolimus and methotrexate for prevention of graft-versus-host disease with haemopoietic cell transplantation with reduced-intensity conditioning: a randomised phase 2 trial with a non-randomised contemporaneous control group (BMT CTN 1203). Lancet Haematol. 2019;6:e132–43.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jones RJ. Haploidentical transplantation: repurposing cyclophosphamide. Biol Blood Marrow Transpl. 2012;18:1771–2.

    Article  Google Scholar 

  23. Kasamon YL, Bolanos-Meade J, Prince GT, Tsai HL, McCurdy SR, Kanakry JA, et al. Outcomes of nonmyeloablative HLA-haploidentical blood or marrow transplantation with high-dose post-transplantation cyclophosphamide in older adults. J Clin Oncol. 2015;33:3152–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Luznik L, O’Donnell PV, Symons HJ, Chen AR, Leffell MS, Zahurak M, et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transpl. 2008;14:641–50.

    Article  CAS  Google Scholar 

  25. Raj K, Eikema DJ, McLornan DP, Olavarria E, Blok HJ, Bregante S, et al. Family Mismatched Allogeneic Stem Cell Transplantation for Myelofibrosis: Report from the Chronic Malignancies Working Party of European Society for Blood and Marrow Transplantation. Biol Blood Marrow Transpl. 2019;25:522–8.

    Article  Google Scholar 

  26. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405.

    Article  CAS  PubMed  Google Scholar 

  27. Jain T, Rampal RK. Accelerated and blast phase myeloproliferative neoplasms. Hematol Oncol Clin North Am. 2021;35:325–35.

    Article  PubMed  Google Scholar 

  28. Lowsky R, Messner H. Mechanisms and treatment of graft failure. In: (eds Forman SJ, Negrin RS, Antin JH, & Appelbaum FR) Thomas’ hematopoietic cell transplantation: stem cell transplantation, I, 5th edn. Thomas’ hematopoietic cell transplantation. Chichester, UK, John Wiley & Sons, Ltd., 2015. p. 944–58.

  29. Filipovich AH, Weisdorf D, Pavletic S, Socie G, Wingard JR, Lee SJ, et al. National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: I. Diagnosis and staging working group report. Biol Blood Marrow Transpl. 2005;11:945–56.

    Article  Google Scholar 

  30. Rowlings PA, Przepiorka D, Klein JP, Gale RP, Passweg JR, Henslee-Downey PJ, et al. IBMTR Severity Index for grading acute graft-versus-host disease: retrospective comparison with Glucksberg grade. Br J Haematol. 1997;97:855–64.

    Article  CAS  PubMed  Google Scholar 

  31. Holtan SG, DeFor TE, Lazaryan A, Bejanyan N, Arora M, Brunstein CG, et al. Composite end point of graft-versus-host disease-free, relapse-free survival after allogeneic hematopoietic cell transplantation. Blood. 2015;125:1333–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bacigalupo A, Ballen K, Rizzo D, Giralt S, Lazarus H, Ho V, et al. Defining the intensity of conditioning regimens: working definitions. Biol Blood Marrow Transpl. 2009;15:1628–33.

    Article  Google Scholar 

  33. Masarova L, Verstovsek S, Hidalgo-Lopez JE, Pemmaraju N, Bose P, Estrov Z, et al. A phase 2 study of ruxolitinib in combination with azacitidine in patients with myelofibrosis. Blood. 2018;132:1664–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bregante S, Dominietto A, Ghiso A, Raiola AM, Gualandi F, Varaldo R, et al. Improved outcome of alternative donor transplantations in patients with myelofibrosis: from unrelated to haploidentical family donors. Biol Blood Marrow Transpl. 2016;22:324–9.

    Article  Google Scholar 

  35. Bacigalupo A, Soraru M, Dominietto A, Pozzi S, Geroldi S, Van Lint MT, et al. Allogeneic hemopoietic SCT for patients with primary myelofibrosis: a predictive transplant score based on transfusion requirement, spleen size and donor type. Bone Marrow Transpl. 2010;45:458–63.

    Article  CAS  Google Scholar 

  36. Lwin Y, Kennedy G, Gottlieb D, Kwan J, Ritchie D, Szer J, et al. Australasian trends in allogeneic stem cell transplantation for myelofibrosis in the molecular era: a retrospective analysis from the Australasian bone marrow transplant recipient registry. Biol Blood Marrow Transpl. 2020;26:2252–61.

    Article  CAS  Google Scholar 

  37. Ciurea SO, Sadegi B, Wilbur A, Alagiozian-Angelova V, Gaitonde S, Dobogai LC, et al. Effects of extensive splenomegaly in patients with myelofibrosis undergoing a reduced intensity allogeneic stem cell transplantation. Br J Haematol. 2008;141:80–3.

    Article  PubMed  Google Scholar 

  38. Shanavas M, Popat U, Michaelis LC, Fauble V, McLornan D, Klisovic R, et al. Outcomes of allogeneic hematopoietic cell transplantation in patients with myelofibrosis with prior exposure to Janus kinase 1/2 inhibitors. Biol Blood Marrow Transpl. 2016;22:432–40.

    Article  CAS  Google Scholar 

  39. Anasetti C, Logan BR, Lee SJ, Waller EK, Weisdorf DJ, Wingard JR, et al. Peripheral-blood stem cells versus bone marrow from unrelated donors. N Engl J Med. 2012;367:1487–96.

    Article  CAS  PubMed  Google Scholar 

  40. Eapen M, Logan BR, Confer DL, Haagenson M, Wagner JE, Weisdorf DJ, et al. Peripheral blood grafts from unrelated donors are associated with increased acute and chronic graft-versus-host disease without improved survival. Biol Blood Marrow Transpl. 2007;13:1461–8.

    Article  Google Scholar 

  41. Ringden O, Labopin M, Beelen DW, Volin L, Ehninger G, Finke J, et al. Bone marrow or peripheral blood stem cell transplantation from unrelated donors in adult patients with acute myeloid leukaemia, an Acute Leukaemia Working Party analysis in 2262 patients. J Intern Med. 2012;272:472–83.

    Article  CAS  PubMed  Google Scholar 

  42. McLornan D, Szydlo R, Koster L, Chalandon Y, Robin M, Wolschke C, et al. Myeloablative and Reduced-Intensity Conditioned Allogeneic Hematopoietic Stem Cell Transplantation in Myelofibrosis: A Retrospective Study by the Chronic Malignancies Working Party of the European Society for Blood and Marrow Transplantation. Biol Blood Marrow Transpl. 2019;25:2167–71.

    Article  Google Scholar 

  43. Jain T, Kunze KL, Temkit M, Partain DK, Patnaik MS, Slack JL, et al. Comparison of reduced intensity conditioning regimens used in patients undergoing hematopoietic stem cell transplantation for myelofibrosis. Bone Marrow Transpl. 2019;54:204–11.

    Article  CAS  Google Scholar 

  44. Robin M, Porcher R, Wolschke C, Sicre de Fontbrune F, Alchalby H, Christopeit M, et al. Outcome after transplantation according to reduced-intensity conditioning regimen in patients undergoing transplantation for myelofibrosis. Biol Blood Marrow Transpl. 2016;22:1206–11.

    Article  Google Scholar 

  45. George B, Pati N, Gilroy N, Ratnamohan M, Huang G, Kerridge I, et al. Pre-transplant cytomegalovirus (CMV) serostatus remains the most important determinant of CMV reactivation after allogeneic hematopoietic stem cell transplantation in the era of surveillance and preemptive therapy. Transpl Infect Dis. 2010;12:322–9.

    Article  CAS  PubMed  Google Scholar 

  46. Ito S, Pophali P, Co W, Koklanaris EK, Superata J, Fahle GA, et al. CMV reactivation is associated with a lower incidence of relapse after allo-SCT for CML. Bone Marrow Transpl. 2013;48:1313–6.

    Article  CAS  Google Scholar 

  47. Manjappa S, Bhamidipati PK, Stokerl-Goldstein KE, DiPersio JF, Uy GL, Westervelt P, et al. Protective effect of cytomegalovirus reactivation on relapse after allogeneic hematopoietic cell transplantation in acute myeloid leukemia patients is influenced by conditioning regimen. Biol Blood Marrow Transpl. 2014;20:46–52.

    Article  CAS  Google Scholar 

  48. Peric Z, Wilson J, Durakovic N, Ostojic A, Desnica L, Vranjes VR, et al. Early human cytomegalovirus reactivation is associated with lower incidence of relapse of myeloproliferative disorders after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transpl. 201853:1450–6.

    Article  CAS  Google Scholar 

  49. Jain T, Cho C, Hilden P, Politikos I, Borrill T, Giralt SA, et al. Cytomegalovirus reactivation promotes CD8+ T cell subset recovery after unmodified allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2019;25:S326–7.

    Article  Google Scholar 

  50. Marty FM, Ljungman P, Chemaly RF, Maertens J, Dadwal SS, Duarte RF, et al. Letermovir prophylaxis for cytomegalovirus in hematopoietic-cell transplantation. N. Engl J Med. 2017;377:2433–44.

    Article  CAS  PubMed  Google Scholar 

  51. Ali H, Aldoss I, Yang D, Mokhtari S, Khaled S, Aribi A, et al. MIPSS70+ v2.0 predicts long-term survival in myelofibrosis after allogeneic HCT with the Flu/Mel conditioning regimen. Blood Adv. 2019;3:83–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kroger N, Panagiota V, Badbaran A, Zabelina T, Triviai I, Araujo Cruz MM, et al. Impact of molecular genetics on outcome in myelofibrosis patients after allogeneic stem cell transplantation. Biol Blood Marrow Transpl. 2017;23:1095–101.

    Article  Google Scholar 

  53. Tamari R, Rapaport F, Zhang N, McNamara C, Kuykendall A, Sallman DA, et al. Impact of high-molecular-risk mutations on transplantation outcomes in patients with myelofibrosis. Biol Blood Marrow Transpl. 2019;25:1142–51.

    Article  CAS  Google Scholar 

  54. Jain T, Kunze KL, Mountjoy L, Partain DK, Kosiorek H, Khera N, et al. Early post-transplantation factors predict survival outcomes in patients undergoing allogeneic hematopoietic cell transplantation for myelofibrosis. Blood Cancer J. 2020;10:36.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S.K., L.R., and T.J. wrote the first draft of the manuscript and were responsible for acquiring, analyzing, and interpreting the data. S.K., A.T.G. and T.J. conceptualized the project. L.R. conducted the statistical analysis. All other authors contributed to the collection of data, revising the manuscript critically for important intellectual content. All authors approved the final version of the manuscript. S.K. and T.J. are accountable for all aspects of the work related to accuracy and integrity.

Corresponding author

Correspondence to Tania Jain.

Ethics declarations

Competing interests

M.R.G. has received consulting fees from Abbvie, Agios, Amgen, Astellas, Blueprint Medicines, Bristol Myers Squibb, Cardinal Health, Daiichi Sankyo, Gilead, Incyte, Karius, Pfizer, Premier, Sierra Oncology, Stemline, and Trovagene; research support from Incyte, Genentech/Roche, and Janssen; and owns stock in Medtronic. B.D. reports institutional research support from Takeda, Janssen, Angiocrine, Pfizer, and Poseida, and serves on the advisory board of Jazz. S.A. reports research funding through Helsinn Healthcare, Actinium Pharmaceuticals, and Pfizer and has received consulting fees from Abbvie and Agios. A.D. reports honoraria through Abbvie, Taiho, and Novartis. V.G. reports institutional research funding through Novartis and honoraria through Novartis, BMS-Celgene, Abbvie, Constellation Pharmaceuticals, and Sierra Oncology. A.T.G. reports research funding through Sierra Oncology, Pfizer, Celgene, CTI Biopharma, Incyte Corporation, Roche/Genentech, Imago Biosciences, and Gilead Sciences, and has received consulting fees from Celgene, CTI Biopharma, AstraZeneca/MedImmune, Incyte Corporation, and Apexx Oncology. T.J. reports institutional research support from CTI Biopharma, Incyte and Syneos Health, Consultancy with Targeted Healthcare Communications, advisory board with Care Dx, and Bristol Myers Squibb. The remaining authors do not have any conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunte, S., Rybicki, L., Viswabandya, A. et al. Allogeneic blood or marrow transplantation with haploidentical donor and post-transplantation cyclophosphamide in patients with myelofibrosis: a multicenter study. Leukemia 36, 856–864 (2022). https://doi.org/10.1038/s41375-021-01449-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-021-01449-1

This article is cited by

Search

Quick links