Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PPIP5K2 promotes colorectal carcinoma pathogenesis through facilitating DNA homologous recombination repair

Abstract

Colorectal carcinoma (CRC) is the second most deadly cancer worldwide. Therapies that take advantage of DNA repair defects have been explored in various tumors but not yet systematically in CRC. Here, we found that Diphosphoinositol Pentakisphosphate Kinase 2 (PPIP5K2), an inositol pyrophosphate kinase, was highly expressed in CRC and associated with a poor prognosis of CRC patients. In vitro and in vivo functional studies demonstrated that PPIP5K2 could promote the proliferation and migration ability of CRC cells independent of its inositol pyrophosphate kinase activity. Mechanically, S1006 dephosphorylation of PPIP5K2 could accelerate its dissociation with 14-3-3 in the cytoplasm, resulting in more nuclear distribution. Moreover, DNA damage treatments such as doxorubicin (DOX) or irradiation (IR) could induce nuclear translocation of PPIP5K2, which subsequently promoted homologous recombination (HR) repair by binding and recruiting RPA70 to the DNA damage site as a novel scaffold protein. Importantly, we verified that S1006 dephosphorylation of PPIP5K2 could significantly enhance the DNA repair ability of CRC cells through a series of DNA repair phenotype assays. In conclusion, PPIP5K2 is critical for enhancing the survival of CRC cells via facilitating DNA HR repair. Our findings revealed an unrecognized biological function and mechanism model of PPIP5K2 dependent on S1006 phosphorylation and provided a potential therapeutic target for CRC patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PPIP5K2 promotes CRC tumorigenesis and is associated with a poor prognosis.
Fig. 2: 14-3-3γ/τ mediates the nuclear translocation of PPIP5K2 via dephosphorylating at the S1006 site.
Fig. 3: PPIP5K2 interacts with RPA70 and accumulates at DNA damage sites.
Fig. 4: PPIP5K2 participates in DNA damage response independent of its kinase activity.
Fig. 5: Dephosphorylation of PPIP5K2-S1006 accelerates DNA damage response.
Fig. 6: PPIP5K2 depletion impairs the loading of RPA70 and RAD51 to DSBs.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. The authenticity of this article has been validated by uploading the key raw data onto the Research Data Deposit public platform (www.researchdata.org.cn), with the approval RDD number as RDDB2021481511.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin. 2018;68:394–424.

    Article  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. Cancer J Clin. 2016;66:7–30.

    Article  Google Scholar 

  3. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  4. Smith G, Carey FA, Beattie J, Wilkie MJ, Lightfoot TJ, Coxhead J, et al. Mutations in APC, Kirsten-ras, and p53-alternative genetic pathways to colorectal cancer. Proc Natl Acad Sci USA. 2002;99:9433–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cremolini C, Schirripa M, Antoniotti C, Moretto R, Salvatore L, Masi G, et al. First-line chemotherapy for mCRC—a review and evidence-based algorithm. Nat Rev Clin Oncol. 2015;12:607–19.

    Article  CAS  PubMed  Google Scholar 

  6. Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA. DNA repair pathways as targets for cancer therapy. Nat Rev Cancer. 2008;8:193–204.

    Article  CAS  PubMed  Google Scholar 

  7. Lièvre A, Bachet JB, Le Corre D, Boige V, Landi B, Emile JF, et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 2006;66:3992–5.

    Article  PubMed  Google Scholar 

  8. Ceccaldi R, Rondinelli B, D’Andrea AD. Repair pathway choices and consequences at the double-strand break. Trends Cell Biol. 2016;26:52–64.

    Article  CAS  PubMed  Google Scholar 

  9. Ashworth A, Lord CJ. Synthetic lethal therapies for cancer: what’s next after PARP inhibitors? Nat Rev Clin Oncol. 2018;15:564–76.

    Article  CAS  PubMed  Google Scholar 

  10. Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009;361:123–34.

    Article  CAS  PubMed  Google Scholar 

  11. Han K, Wang FW, Cao CH, Ling H, Chen JW, Chen RX, et al. CircLONP2 enhances colorectal carcinoma invasion and metastasis through modulating the maturation and exosomal dissemination of microRNA-17. Mol Cancer. 2020;19:60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chakraborty A. The inositol pyrophosphate pathway in health and diseases. Biol Rev Camb Philos Soc. 2018;93:1203–27.

    Article  PubMed  Google Scholar 

  13. Machkalyan G, Hèbert TE, Miller GJ. PPIP5K1 suppresses etoposide-triggered apoptosis. J Mol Signal. 2016;11:4.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gu C, Nguyen HN, Ganini D, Chen Z, Jessen HJ, Gu Z, et al. KO of 5-InsP(7) kinase activity transforms the HCT116 colon cancer cell line into a hypermetabolic, growth-inhibited phenotype. Proc Natl Acad Sci USA. 2017;114:11968–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen H, Sun X, Ge W, Qian Y, Bai R, Zheng S. A seven-gene signature predicts overall survival of patients with colorectal cancer. Oncotarget. 2017;8:95054–65.

    Article  PubMed  Google Scholar 

  16. Klaeger S, Heinzlmeir S, Wilhelm M, Polzer H, Vick B, Koenig PA, et al. The target landscape of clinical kinase drugs. Science (New York, NY) 2017;358:eaan4368.

  17. Wang H, Falck JR, Hall TM, Shears SB. Structural basis for an inositol pyrophosphate kinase surmounting phosphate crowding. Nat Chem Biol. 2011;8:111–6.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yong ST, Nguyen HN, Choi JH, Bortner CD, Williams J, Pulloor NK, et al. Identification of a functional nuclear translocation sequence in hPPIP5K2. BMC Cell Biol. 2015;16:17.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yaffe MB. How do 14-3-3 proteins work? Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett. 2002;513:53–57.

    Article  CAS  PubMed  Google Scholar 

  20. Aghazadeh Y, Papadopoulos V. The role of the 14-3-3 protein family in health, disease, and drug development. Drug Discov Today. 2016;21:278–87.

    Article  CAS  PubMed  Google Scholar 

  21. Moon S, Kim W, Kim S, Kim Y, Song Y, Bilousov O, et al. Phosphorylation by NLK inhibits YAP-14-3-3-interactions and induces its nuclear localization. EMBO Rep. 2017;18:61–71.

    Article  CAS  PubMed  Google Scholar 

  22. Yaffe MB, Rittinger K, Volinia S, Caron PR, Aitken A, Leffers H, et al. The structural basis for 14-3-3:phosphopeptide binding specificity. Cell. 1997;91:961–71.

    Article  CAS  PubMed  Google Scholar 

  23. Hou Z, Peng H, White DE, Wang P, Lieberman PM, Halazonetis T, et al. 14-3-3 binding sites in the snail protein are essential for snail-mediated transcriptional repression and epithelial-mesenchymal differentiation. Cancer Res. 2010;70:4385–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu H, Zhang H, Wu X, Ma D, Wu J, Wang L, et al. Nuclear cGAS suppresses DNA repair and promotes tumorigenesis. Nature. 2018;563:131–6.

    Article  CAS  PubMed  Google Scholar 

  25. Yoshida K, Yamaguchi T, Natsume T, Kufe D, Miki Y. JNK phosphorylation of 14-3-3 proteins regulates nuclear targeting of c-Abl in the apoptotic response to DNA damage. Nat Cell Biol. 2005;7:278–85.

    Article  CAS  PubMed  Google Scholar 

  26. Fanning E, Klimovich V, Nager AR. A dynamic model for replication protein A (RPA) function in DNA processing pathways. Nucleic Acids Res. 2006;34:4126–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Maréchal A, Zou L. RPA-coated single-stranded DNA as a platform for post-translational modifications in the DNA damage response. Cell Res. 2015;25:9–23.

    Article  PubMed  Google Scholar 

  28. Romanova LY, Willers H, Blagosklonny MV, Powell SN. The interaction of p53 with replication protein A mediates suppression of homologous recombination. Oncogene. 2004;23:9025–33.

    Article  CAS  PubMed  Google Scholar 

  29. Yang Q, Zhu Q, Lu X, Du Y, Cao L, Shen C, et al. G9a coordinates with the RPA complex to promote DNA damage repair and cell survival. Proc Natl Acad Sci USA. 2017;114:E6054–e6063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bhat KP, Cortez D. RPA and RAD51: fork reversal, fork protection, and genome stability. Nat Struct Mol Biol. 2018;25:446–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cai MY, Dunn CE, Chen W, Kochupurakkal BS, Nguyen H, Moreau LA, et al. Cooperation of the ATM and Fanconi Anemia/BRCA Pathways in Double-Strand Break End Resection. Cell Rep. 2020;30:2402–.e2405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu J, Doty T, Gibson B, Heyer WD. Human BRCA2 protein promotes RAD51 filament formation on RPA-covered single-stranded DNA. Nat Struct Mol Biol. 2010;17:1260–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Randall TA, Gu C, Li X, Wang H, Shears SB. A two-way switch for inositol pyrophosphate signaling: evolutionary history and biological significance of a unique, bifunctional kinase/phosphatase. Adv Biol Regul. 2020;75:100674.

    Article  PubMed  Google Scholar 

  34. Thota SG, Bhandari R. The emerging roles of inositol pyrophosphates in eukaryotic cell physiology. J Biosci. 2015;40:593–605.

    Article  CAS  PubMed  Google Scholar 

  35. Pulloor NK, Nair S, McCaffrey K, Kostic AD, Bist P, Weaver JD, et al. Human genome-wide RNAi screen identifies an essential role for inositol pyrophosphates in Type-I interferon response. PLoS Pathog. 2014;10:e1003981.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Pöhlmann J, Risse C, Seidel C, Pohlmann T, Jakopec V, Walla E, et al. The Vip1 inositol polyphosphate kinase family regulates polarized growth and modulates the microtubule cytoskeleton in fungi. PLoS Genet. 2014;10:e1004586.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jadav RS, Kumar D, Buwa N, Ganguli S, Thampatty SR, Balasubramanian N, et al. Deletion of inositol hexakisphosphate kinase 1 (IP6K1) reduces cell migration and invasion, conferring protection from aerodigestive tract carcinoma in mice. Cell Signal. 2016;28:1124–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Morrison BH, Bauer JA, Hu J, Grane RW, Ozdemir AM, Chawla-Sarkar M, et al. Inositol hexakisphosphate kinase 2 sensitizes ovarian carcinoma cells to multiple cancer therapeutics. Oncogene. 2002;21:1882–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Khaled ML, Bykhovskaya Y, Gu C, Liu A, Drewry MD, Chen Z, et al. PPIP5K2 and PCSK1 are candidate genetic contributors to familial keratoconus. Sci Rep. 2019;9:19406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yousaf R, Gu C, Ahmed ZM, Khan SN, Friedman TB, Riazuddin S, et al. Mutations in diphosphoinositol-pentakisphosphate kinase PPIP5K2 are associated with hearing loss in human and mouse. PLoS Genet. 2018;14:e1007297.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wang H, Godage HY, Riley AM, Weaver JD, Shears SB, Potter BV. Synthetic inositol phosphate analogs reveal that PPIP5K2 has a surface-mounted substrate capture site that is a target for drug discovery. Chem Biol. 2014;21:689–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pendergast AM. Stress and death: breaking up the c-Abl/14-3-3 complex in apoptosis. Nat Cell Biol. 2005;7:213–4.

    Article  CAS  PubMed  Google Scholar 

  43. Nihira K, Taira N, Miki Y, Yoshida K. TTK/Mps1 controls nuclear targeting of c-Abl by 14-3-3-coupled phosphorylation in response to oxidative stress. Oncogene. 2008;27:7285–95.

    Article  CAS  PubMed  Google Scholar 

  44. Graves PR, Lovly CM, Uy GL, Piwnica-Worms H. Localization of human Cdc25C is regulated both by nuclear export and 14-3-3 protein binding. Oncogene. 2001;20:1839–51.

    Article  CAS  PubMed  Google Scholar 

  45. Basu S, Totty NF, Irwin MS, Sudol M, Downward J. Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis. Mol Cell. 2003;11:11–23.

    Article  CAS  PubMed  Google Scholar 

  46. Tzivion G, Dobson M, Ramakrishnan G. FoxO transcription factors; regulation by AKT and 14-3-3 proteins. Biochim. Biophys. Acta. 2011;1813:1938–45.

    Article  CAS  PubMed  Google Scholar 

  47. Lo MC, Gay F, Odom R, Shi Y, Lin R. Phosphorylation by the beta-catenin/MAPK complex promotes 14-3-3-mediated nuclear export of TCF/POP-1 in signal-responsive cells in C. elegans. Cell. 2004;117:95–106.

    Article  CAS  PubMed  Google Scholar 

  48. Gao SS, Guan H, Yan S, Hu S, Song M, Guo ZP, et al. TIP60 K430 SUMOylation attenuates its interaction with DNA-PKcs in S-phase cells: facilitating homologous recombination and emerging target for cancer therapy. Sci Adv. 2020;6:eaba7822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Key R&D Program of China [grant number 2017YFC1309000]; the National Natural Science Foundation of China [grant numbers 81972227, 81730072, 82072608, 81872001, and 82002467]; the Natural Science Foundation of Guangdong [grant numbers 2020A151501021 and 2020A1515011020]; the Guangzhou Science and Technology Plan Projects [grant number 201904020044] and the China Postdoctoral Science Foundation (2020M672999).

Author information

Authors and Affiliations

Authors

Contributions

D.X. and F.-W.W. conceived and devised the study. C.-H.C. and F.-W.W. designed the experiments and analysis. H.L., K.H., X.-P.L., J.-H.C., J.Z., Z.-C.X., S.L., J.-L.L., J.-L.D. and J. L., performed the experiments. M.-Y.C., L.L. and J.-W.C. performed bioinformatics and statistical analysis. C.-H.C., H.L. and K.H. analyzed and interpreted the data. Y.-J.F., Z.-Z.P. and F.W. provided CRC patients tissue samples and clinical information. D.X. and F.-W.W. supervised the research and together with C.-H.C., H.L. and K.H. wrote the paper. All authors approved the submitted paper.

Corresponding authors

Correspondence to Dan Xie or Feng-Wei Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, CH., Ling, H., Han, K. et al. PPIP5K2 promotes colorectal carcinoma pathogenesis through facilitating DNA homologous recombination repair. Oncogene 40, 6680–6691 (2021). https://doi.org/10.1038/s41388-021-02052-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-02052-5

This article is cited by

Search

Quick links