Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Prebiotic photoredox synthesis from carbon dioxide and sulfite

Abstract

Carbon dioxide (CO2) is the major carbonaceous component of many planetary atmospheres, which includes the Earth throughout its history. Carbon fixation chemistry—which reduces CO2 to organics, utilizing hydrogen as the stoichiometric reductant—usually requires high pressures and temperatures, and the yields of products of potential use to nascent biology are low. Here we demonstrate an efficient ultraviolet photoredox chemistry between CO2 and sulfite that generates organics and sulfate. The chemistry is initiated by electron photodetachment from sulfite to give sulfite radicals and hydrated electrons, which reduce CO2 to its radical anion. A network of reactions that generates citrate, malate, succinate and tartrate by irradiation of glycolate in the presence of sulfite was also revealed. The simplicity of this carboxysulfitic chemistry and the widespread occurrence and abundance of its feedstocks suggest that it could have readily taken place on the surfaces of rocky planets. The availability of the carboxylate products on early Earth could have driven the development of central carbon metabolism before the advent of biological CO2 fixation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Carboxysulfitic photoredox reaction network starting from bicarbonate (HCO3) 1.
Fig. 2: Carboxysulfitic photoredox reaction network starting from glycolate 5.
Fig. 3: Connections between environmental chemistry and the development of metabolism.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in the manuscript and the Supplementary Information.

References

  1. Horita, J. & Berndt, M. E. Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science 285, 1055–1057 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Hudson, R. et al. CO2 reduction driven by a pH gradient. Proc. Natl Acad. Sci. USA 117, 22873–22879 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Varma, S. J., Muchowska, K. B., Chatelain, P. & Moran, J. Native iron reduces CO2 to intermediates and end-products of the acetyl-CoA pathway. Nat. Ecol. Evol. 2, 1019–1024 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhang, X. V. et al. Photodriven reduction and oxidation reactions on colloidal semiconductor particles: implications for prebiotic synthesis. J. Photochem. Photobiol. Chem. 185, 301–311 (2007).

    Article  CAS  Google Scholar 

  5. Patel, B. H., Percivalle, C., Ritson, D. J., Duffy, C. D. & Sutherland, J. D. Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat. Chem. 7, 301–307 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Green, N. J., Xu, J. & Sutherland, J. D. Illuminating life’s origins: UV photochemistry in abiotic synthesis of biomolecules. J. Am. Chem. Soc. 143, 7219–7236 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xu, J. et al. Photochemical reductive homologation of hydrogen cyanide using sulfite and ferrocyanide. Chem. Commun. 54, 5566–5569 (2018).

    Article  CAS  Google Scholar 

  8. Zahnle, K., Claire, M. & Catling, D. The loss of mass-independent fractionation in sulfur due to a Palaeo-proterozoic collapse of atmospheric methane. Geobiology 4, 271–283 (2006).

    Article  CAS  Google Scholar 

  9. Gerlach, T. M. Evaluation and restoration of the 1970 volcanic gas analyses from Mount Etna, Sicily. J. Volcanol. Geotherm. Res. 6, 165–178 (1979).

    Article  CAS  Google Scholar 

  10. Farquhar, J., Bao, H. & Thiemens, M. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–758 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Farquhar, J., Savarino, J., Jackson, T. & Thiemens, M. H. Evidence of atmospheric sulphur in the Martian regolith from sulphur isotopes in meteorites. Nature 404, 50–52 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Ranjan, S., Todd, Z. R., Sutherland, J. D. & Sasselov, D. D. Sulfidic anion concentrations on early earth for surficial origins-of-life chemistry. Astrobiology 18, 1023–1040 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang, L., Zhu, D., Nathanson, G. M. & Hamers, R. J. Selective photoelectrochemical reduction of aqueous CO2 to CO by solvated electrons. Angew. Chem. Int. Ed. 126, 9904–9908 (2014).

    Article  Google Scholar 

  14. Fischer, M. & Warneck, P. Photodecomposition and photooxidation of hydrogen sulfite in aqueous solution. J. Phys. Chem. 100, 15111–15117 (1996).

    Article  CAS  Google Scholar 

  15. Toner, J. D. & Catling, D. C. A carbonate-rich lake solution to the phosphate problem of the origin of life. Proc. Natl Acad. Sci. USA 117, 883–888 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Toner, J. D. & Catling, D. C. Alkaline lake settings for concentrated prebiotic cyanide and the origin of life. Geochim. Cosmochim. Acta 260, 124–132 (2019).

    Article  CAS  Google Scholar 

  17. Malati, M. A. Experimental Inorganic/Physical Chemistry: an Investigative, Integrated Approach to Practical Project Work (Woodhead, 1999).

  18. Murphy, L. J. et al. A simple complex on the verge of breakdown: isolation of the elusive cyanoformate ion. Science 344, 75–78 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Hering, C., von Langermann, J. & Schulz, A. The elusive cyanoformate: an unusual cyanide shuttle. Angew. Chem. Int. Ed. 53, 8282–8284 (2014).

    Article  CAS  Google Scholar 

  20. Juhl, M., Petersen, A. R. & Lee, J.-W. CO2-enabled cyanohydrin synthesis and facile iterative homologation reactions. Chem. Eur. J. 27, 228–232 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Roughton, F. J. W. & Booth, V. H. The catalytic effect of buffers on the reaction CO2 + H2O = H2CO3. Biochem. J. 32, 2049–2069 (1938).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zeebe, R. E., & Wolf-Gladrow, D. CO2 in Seawater: Equilibrium, Kinetics, Isotopes (Gulf Professional, 2001).

  23. Gordon, S., Hart, E. J., Matheson, M. S., Rabani, J. & Thomas, J. K. Reactions of the hydrated electron. Discuss. Faraday Soc 36, 193–205 (1963).

    Article  Google Scholar 

  24. Hentz, R. R., Farhataziz, Milner, D. J. & Burton, M. γ-Radiolysis of liquids at high pressures. III. Aqueous solutions of sodium bicarbonate. J. Chem. Phys. 47, 374–377 (1967).

    Article  CAS  Google Scholar 

  25. Flyunt, R., Schuchmann, M. N. & von Sonntag, C. A common carbanion intermediate in the recombination and proton-catalysed disproportionation of the carboxyl radical anion CO2·– in aqueous solution. Chem. Eur. J. 7, 796–799 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Swallow, A. J. Recent results from pulse radiolysis. Photochem. Photobiol. 7, 683–694 (1968).

    Article  CAS  Google Scholar 

  27. Getoff, N., Gütlbauer, F. & Schenck, G. O. Strahlenchemische carboxylierung von ameisensäure und methanol in wässriger lösung. Int. J. Appl. Radiat. Isot. 17, 341–349 (1966).

    Article  CAS  PubMed  Google Scholar 

  28. Getoff, N., Schwörer, F., Markovic, V. M., Sehested, K. & Nielsen, S. O. Pulse radiolysis of oxalic acid and oxalates. J. Phys. Chem. 75, 749–755 (1971).

    Article  Google Scholar 

  29. Doussin, J.-F. & Monod, A. Structure–activity relationship for the estimation of OH-oxidation rate constants of carbonyl compounds in the aqueous phase. Atmos. Chem. Phys. 13, 11625–11641 (2013).

    Article  CAS  Google Scholar 

  30. Olson, T. M. & Hoffmann, M. R. Formation kinetics, mechanism and thermodynamics of glyoxylic acid–S(IV) adducts. J. Phys. Chem. 92, 4246–4253 (1988).

    Article  CAS  Google Scholar 

  31. Laroff, G. P. & Fessenden, R. W. 13C hyperfine interactions in radicals from some carboxylic acids. J. Chem. Phys. 55, 5000–5008 (1971).

    Article  CAS  Google Scholar 

  32. Bell, J. A., Grunwald, E. & Hayon, E. Kinetics of deprotonation of organic free radicals in water. Reaction of HOC·HCO2, HOC·HCONH2 and HOC·CH3CONH2 with various bases. J. Am. Chem. Soc. 97, 2995–3000 (1975).

    Article  CAS  Google Scholar 

  33. Getoff, N. CO2 and CO utilization: radiation-induced carboxylation of aqueous chloroacetic acid to malonic acid. Radiat. Phys. Chem. 67, 617–621 (2003).

    Article  CAS  Google Scholar 

  34. Arvis, M., Lustig, H. & Hickel, B. Étude par photolyse éclair de la photoionisation des anions formiate, acetate et oxalate dans l’eau. J. Photochem. 13, 223–232 (1980).

    Article  CAS  Google Scholar 

  35. Huie, R. E. & Clifton, C. L. Kinetics of the reaction of the sulfate radical with the oxalate anion. Int. J. Chem. Kinet. 28, 195–199 (1996).

    Article  CAS  Google Scholar 

  36. Habteyes, T., Velarde, L. & Sanov, A. Photodissociation of CO2 in water clusters via Renner–Teller and conical interactions. J. Chem. Phys. 126, 154301 (2007).

    Article  PubMed  CAS  Google Scholar 

  37. Wang, W.-F., Schuchmann, M. N., Schuchmann, H.-P. & von Sonntag, C. The importance of mesomerism in the termination of α-carboxymethyl radicals from aqueous malonic and acetic acids. Chem. Eur. J. 7, 791–795 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Rimmer, P. et al. Timescales for prebiotic photochemistry under realistic surface UV conditions. Astrobiology https://doi.org/10.1089/ast.2020.2335 (in the press).

  39. Gilbert, B. C., Larkin, J. P. & Norman, R. O. C. Electron spin resonance studies. Part XXXIII. Evidence for heterolytic and homolytic transformations of radicals from 1,2-diols and related compounds. J. Chem. Soc. Perkin Trans. 2 1972, 794–802 (1972).

    Article  Google Scholar 

  40. Wilde, S., Valley, J., Peck, W. & Graham, C. M. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, 175–178 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Valley, J. W. et al. 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contrib. Mineral. Petrol. 150, 561–580 (2005).

    Article  CAS  Google Scholar 

  42. Rosing, M. T. 13C-depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from west Greenland. Science 283, 674–676 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Kasting, J. F. The Goldilocks planet? How silicate weathering maintains Earth ‘just right’. Elements: Int. Mag. Mineral. Geochem. Petrol. 15, 235–240 (2019).

    Article  CAS  Google Scholar 

  44. Grotzinger, J. P. et al. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars. `Science 350, aac7575 (2015).

    CAS  Google Scholar 

  45. DiBiase, R. A., Limaye, A. B., Scheingross, J. S., Fischer, W. W. & Lamb, M. P. Deltaic deposits at Aeolis Dorsa: sedimentary evidence for a standing body of water on the northern plains of Mars. J. Geophys. Res. Planets 118, 1285–1302 (2013).

    Article  CAS  Google Scholar 

  46. Hurowitz, J. A. Redox stratification of an ancient lake in Gale Crater, Mars. Science 356, eaah6849 (2017).

    Article  PubMed  CAS  Google Scholar 

  47. Milliken, R. E., Fischer, W. W. & Hurowitz, J. A. Missing salts on early Mars. Geophys. Res. Lett. 36, L11202 (2009).

    Article  CAS  Google Scholar 

  48. Wolfenden, R., Lewis, C. A. Jr. & Yuan, Y. Kinetic challenges facing oxalate, malonate, acetoacetate and oxaloacetate decarboxylases. J. Am. Chem. Soc. 133, 5683–5685 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Goldstein, S. & Rabani, J. The ferrioxalate and iodide–iodate actinometers in the UV region. J. Photochem. Photobiol. A 193, 50–55 (2008).

    Article  CAS  Google Scholar 

  50. Sasselov, D. D., Grotzinger, J. P. & Sutherland, J. D. The origin of life as a planetary phenomenon. Sci. Adv. 6, eaax3419 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cleaves, H. J. II The prebiotic geochemistry of formaldehyde. Precambrian Res. 164, 111–118 (2008).

    Article  CAS  Google Scholar 

  52. Yew, W. S. et al. Evolution of enzymatic activities in the enolase superfamily: d-tartrate dehydratase from Bradyrhizobium japonicum. Biochemistry 45, 14598–14608 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Sagi, V. N., Punna, V., Hu, F., Meher, G. & Krishnamurthy, R. Exploratory experiments on the chemistry of the ‘glyoxylate scenario’: formation of ketosugars from dihydroxyfumarate. J. Am. Chem. Soc. 134, 3577–3589 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu, Z. et al. Harnessing chemical energy for the activation and joining of prebiotic building blocks. Nat. Chem. 12, 1023–1028 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schrader, T. et al. Vibrational relaxation following ultrafast internal conversion: comparing IR and Raman probing. Chem. Phys. Lett. 392, 358–364 (2004).

    Article  CAS  Google Scholar 

  56. Ryseck, G. et al. The excited-state decay of 1-methyl-2(1H)-pyrimidinone is an activated process. ChemPhysChem 12, 1880–1888 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Haiser, K. et al. Mechanism of UV-induced formation of Dewar lesions in DNA. Angew. Chem. Int. Ed. 51, 408–411 (2012).

    Article  CAS  Google Scholar 

  58. Satzger, H. & Zinth, W. Visualization of transient absorption dynamics—towards a qualitative view of complex reaction kinetics. Chem. Phys. 295, 287–295 (2003).

    Article  CAS  Google Scholar 

  59. Dominguez, P. N. et al. Primary reactions in photosynthetic reaction centers of Rhodobacter sphaeroides—time constants of the initial electron transfer. Chem. Phys. Lett. 601, 103–109 (2014).

    Article  CAS  Google Scholar 

  60. Gutierrez-Osuna, R., Nagle, H. T. & Schiffman, S. S. Transient response analysis of an electronic nose using multi-exponential models. Sens. Actuators B 61, 170–182 (1999).

    Article  CAS  Google Scholar 

  61. Buxton, G. V., Greenstock, C. L., Helman, P. & Ross, A. B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals in aqueous solution. J. Phys. Chem. Ref. Data 17, 513–886 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the J.D.S., D.D.S. and W.W.F. group members for helpful discussions. This research was supported by the Medical Research Council (MC_UP_A024_1009 to J.D.S.), the Simons Foundation (290362 to J.D.S., 290360 to D.D.S. and 554187 to W.W.F.). C.L.K. and D.D.S. thank W. Zinth, P. Dominguez, D. Yahalomi and G. Lozano for helpful discussions and experimental assistance, and acknowledge the Harvard Origins of Life Initiative.

Author information

Authors and Affiliations

Authors

Contributions

Z.L. discovered this carboxysulfitic chemistry and explored its scope under the supervision of J.D.S. and with the assistance of L.-F.W., C.L.K. performed the pump–probe experiments under the supervision of D.D.S. and W.W.F. evaluated the geochemical relevance of the chemistry. All the authors co-wrote the manuscript.

Corresponding author

Correspondence to John D. Sutherland.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1

Product concentrations and percentage yields after UV irradiation of solutions of NaHCO3 and Na2SO3.

Extended Data Fig. 2

Product concentrations and percentage yields after irradiation of individual bicarbonate reduction products (50 mM) and Na2SO3 (100 mM).

Supplementary information

Supplementary Information

Supplementary Figs. 1–32 and Tables 1–3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Wu, LF., Kufner, C.L. et al. Prebiotic photoredox synthesis from carbon dioxide and sulfite. Nat. Chem. 13, 1126–1132 (2021). https://doi.org/10.1038/s41557-021-00789-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00789-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing