Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

An inducible p21-Cre mouse model to monitor and manipulate p21-highly-expressing senescent cells in vivo

Abstract

The role of senescent cells has been implicated in various tissue dysfunctions associated with aging, obesity and other pathological conditions. Currently, most transgenic mouse models target only p16Ink4a-highly expressing (p16high) cells. In the present technical report, we generated a p21-Cre mouse model, containing a p21 promoter-driving inducible Cre, enabling us to examine p21Cip1-highly expressing (p21high) cells, a previously unexplored cell population exhibiting several characteristics typical of senescent cells. By crossing p21-Cre mice with different floxed mice, we managed to monitor, sort, image, eliminate or modulate p21high cells in vivo. We showed that p21high cells can be induced by various conditions, and percentages of p21high cells varied from 1.5% to 10% across different tissues in 23-month-old mice. Intermittent clearance of p21high cells improved physical function in 23-month-old mice. Our report demonstrates that the p21-Cre mouse model is a valuable and powerful tool for studying p21high cells to further understand the biology of senescent cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Generation of p21-Cre mouse model.
Fig. 2: Whole-body live imaging of p21high cells in vivo using BLI.
Fig. 3: The p21high cells accumulate in various tissues with aging.
Fig. 4: The p21high cells can be induced by aging, chemotherapy and obesity.
Fig. 5: The p21high cells exhibit features of cellular senescence.
Fig. 6: Inducible elimination of p21high cells using DTA.
Fig. 7: Genetic inhibition of SASP in p21high cells in vivo.
Fig. 8: Clearance of p21high cells improves physical function in old mice.

Similar content being viewed by others

Data availability

The source data are published with the manuscript and are available from the corresponding author on reasonable request. The link for the Tabula Muris Senis database is https://tabula-muris-senis.ds.czbiohub.org.

References

  1. Gorgoulis, V. et al. Cellular senescence: Defining a path forward. Cell 179, 813–827 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Tchkonia, T., Zhu, Y., van Deursen, J., Campisi, J. & Kirkland, J. L. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J. Clin. Invest. 123, 966–972 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kirkland, J. L. & Tchkonia, T. Cellular senescence: a translational perspective. eBioMedicine 21, 21–28 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kuilman, T. et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133, 1019–1031 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Wang, C. et al. DNA damage response and cellular senescence in tissues of aging mice. Aging Cell 8, 311–323 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Zhu, Y., Armstrong, J. L., Tchkonia, T. & Kirkland, J. L. Cellular senescence and the senescent secretory phenotype in age-related chronic diseases. Curr. Opin. Clin. Nutr. Metabol. Care 17, 324–328 (2014).

    Article  CAS  Google Scholar 

  7. Baker, D. J. et al. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 530, 184–189 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xu, M. et al. Targeting senescent cells enhances adipogenesis and metabolic function in old age. eLife 4, e12997 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Xu, M. et al. JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proc. Natl Aacd. Sci. USA 112, E6301–E6310 (2015).

    Article  CAS  Google Scholar 

  10. Kirkland, J. L., Tchkonia, T., Zhu, Y., Niedernhofer, L. J. & Robbins, P. D. The clinical potential of senolytic drugs. J. Am. Geriatr. Soc. 65, 2297–2301 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Acosta, J. C. et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 15, 978–990 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nelson, G. et al. A senescent cell bystander effect: senescence-induced senescence. Aging Cell 11, 345–349 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Xu, M. et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24, 1246–1256 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. da Silva, P. F. L. et al. The bystander effect contributes to the accumulation of senescent cells in vivo. Aging Cell 18, e12848 (2019).

    Article  PubMed  CAS  Google Scholar 

  15. Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Demaria, M. et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 31, 722–733 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Farr, J. N. et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat. Med. 23, 1072–1079 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Palmer, A. K. et al. Targeting senescent cells alleviates obesity-induced metabolic dysfunction. Aging Cell https://doi.org/10.1111/acel.12950 (2019).

  19. Jeon, O. H. et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat. Med. 23, 775–781 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bussian, T. J. et al. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 562, 578–582 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Roos, C. M. et al. Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell 15, 973–977 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Childs, B. G. et al. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 354, 472–477 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ogrodnik, M. et al. Cellular senescence drives age-dependent hepatic steatosis. Nat. Commun. 8, 15691 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schafer, M. J. et al. Cellular senescence mediates fibrotic pulmonary disease. Nat. Commun. 8, 14532 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chang, J. et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat. Med. 22, 78–83 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Grosse, L. et al. Defined p16High senescent cell types are indispensable for mouse healthspan. Cell Metab. 32, 87–99 e86 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Omori, S. et al. Generation of a p16 reporter mouse and its use to characterize and target p16high cells in vivo. Cell Metab 32, 814–828 e816 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Hall, B. M. et al. p16Ink4a and senescence-associated beta-galactosidase can be induced in macrophages as part of a reversible response to physiological stimuli. Aging 9, 1867–1884 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Frescas, D. et al. Murine mesenchymal cells that express elevated levels of the CDK inhibitor p16Ink4a in vivo are not necessarily senescent. Cell Cycle 16, 1526–1533 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Di Micco, R., Krizhanovsky, V., Baker, D. & d’Adda di Fagagna, F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-020-00314-w (2020).

  31. Roy, A. L. et al. A blueprint for characterizing senescence. Cell 183, 1143–1146 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tabula Muris, C. A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature 583, 590–595 (2020).

    Article  CAS  Google Scholar 

  33. Feil, R., Wagner, J., Metzger, D. & Chambon, P. Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem. Biophys. Res. Commun. 237, 752–757 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. el-Deiry, W. S. et al. Topological control of p21WAF1/CIP1 expression in normal and neoplastic tissues. Cancer Res. 55, 2910–2919 (1995).

    CAS  PubMed  Google Scholar 

  35. Tasic, B. et al. Site-specific integrase-mediated transgenesis in mice via pronuclear injection. Proc. Natl Acad. Sci. USA 108, 7902–7907 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hippenmeyer, S. et al. Genetic mosaic dissection of Lis1 and Ndel1 in neuronal migration. Neuron 68, 695–709 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Safran, M. et al. Mouse reporter strain for noninvasive bioluminescent imaging of cells that have undergone Cre-mediated recombination. Mol. Imaging 2, 297–302 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Tinkum, K. L. et al. Bioluminescence imaging captures the expression and dynamics of endogenous p21 promoter activity in living mice and intact cells. Mol. Cell. Biol. 31, 3759–3772 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schafer, M. J. et al. Exercise prevents diet-induced cellular senescence in adipose tissue. Diabetes 65, 1606–1615 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, B. et al. Transplanting cells from old but not young donors causes physical dysfunction in older recipients. Aging Cell https://doi.org/10.1111/acel.13106 (2020).

  42. Biran, A. et al. Quantitative identification of senescent cells in aging and disease. Aging Cell 16, 661–671 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Freund, A., Laberge, R. M., Demaria, M. & Campisi, J. Lamin B1 loss is a senescence-associated biomarker. Mol. Biol. Cell 23, 2066–2075 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Voehringer, D., Liang, H. E. & Locksley, R. M. Homeostasis and effector function of lymphopenia-induced ‘memory-like’ T cells in constitutively T cell-depleted mice. J. Immunol. 180, 4742–4753 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Oppenheimer, N. J. & Bodley, J. W. Diphtheria toxin. Site and configuration of ADP-ribosylation of diphthamide in elongation factor 2. J. Biol. Chem. 256, 8579–8581 (1981).

    Article  CAS  PubMed  Google Scholar 

  46. Chien, Y. et al. Control of the senescence-associated secretory phenotype by NF-kappaB promotes senescence and enhances chemosensitivity. Genes Dev. 25, 2125–2136 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen, L. F. & Greene, W. C. Shaping the nuclear action of NF-kappaB. Nat. Rev. Mol. Cell Biol. 5, 392–401 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Heise, N. et al. Germinal center B cell maintenance and differentiation are controlled by distinct NF-kappaB transcription factor subunits. J. Exp. Med. 211, 2103–2118 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hayashi, S. & McMahon, A. P. Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev. Biol. 244, 305–318 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Fried, L. P. et al. The physical frailty syndrome as a transition from homeostatic symphony to cacophony. Nat. Aging 1, 36–46 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Fried, L. P. et al. Frailty in older adults: evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 56, M146–M156 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Justice, J. N. et al. Senolytics in idiopathic pulmonary fibrosis: results from a first-in-human, open-label, pilot study. eBioMedicine 40, 554–563 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ovadya, Y. et al. Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nat. Commun. 9, 5435 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Burd, C. E. et al. Monitoring tumorigenesis and senescence in vivo with a p16INK4a-luciferase model. Cell 152, 340–351 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Karin, O., Agrawal, A., Porat, Z., Krizhanovsky, V. & Alon, U. Senescent cell turnover slows with age providing an explanation for the Gompertz law. Nat. Commun. 10, 5495 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Martin-Caballero, J., Flores, J. M., Garcia-Palencia, P. & Serrano, M. Tumor susceptibility of p21Waf1/Cip1-deficient mice. Cancer Res. 61, 6234–6238 (2001).

    CAS  PubMed  Google Scholar 

  57. Ohtani, N. et al. Visualizing the dynamics of p21Waf1/Cip1 cyclin-dependent kinase inhibitor expression in living animals. Proc. Natl Acad. Sci. USA 104, 15034–15039 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yousefzadeh, M. J. et al. Fisetin is a senotherapeutic that extends health and lifespan. eBioMedicine 36, 18–28 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Mao, X., Fujiwara, Y., Chapdelaine, A., Yang, H. & Orkin, S. H. Activation of EGFP expression by Cre-mediated excision in a new ROSA26 reporter mouse strain. Blood 97, 324–326 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Xu, M., Tchkonia, T. & Kirkland, J. L. Perspective: targeting the JAK/STAT pathway to fight age-related dysfunction. Pharmacol. Res. 111, 152–154 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Moiseeva, O. et al. Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-kappaB activation. Aging Cell 12, 489–498 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Martin-Montalvo, A. et al. Metformin improves healthspan and lifespan in mice. Nat. Commun. 4, 2192 (2013).

    Article  PubMed  CAS  Google Scholar 

  63. Harrison, D. E. et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392–395 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Herranz, N. et al. mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat. Cell Biol. 17, 1205–1217 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Laberge, R. M. et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat. Cell Biol. 17, 1049–1061 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xu, M. et al. Transplanted senescent cells induce an osteoarthritis-like condition in mice. J. Gerontol. A Biol. Sci. Med. Sci. 72, 780–785 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank colleagues in the UConn Center on Aging for helpful and constructive discussion, Z. Hao for histology services and S. Farkas for administrative assistance. This work was supported in part by the Regenerative Medicine Initiative for Diabetes–Career Development Award from Mayo Clinic (to M.X.), Glenn Foundation for Medical Research and AFAR Grant for Junior Faculty (to M.X.), Robert and Arlene Kogod (to J.L.K.), the Connor Group (to J.L.K.), Robert J. and Theresa W. Ryan (to J.L.K.), the Noaber Foundation (to J.L.K.), Travelers Chair in Geriatrics and Gerontology (to G.A.K.), and National Institutes of Health grants (nos. R37AG013925 (to J.L.K.), P01AG062413 (to J.L.K.), R33AG061456 (to J.L.K., T.T. and G.A.K.), AG063528 (to M.X.), AG066679 (to M.X.) and AG068860 (to M.X.)).

Author information

Authors and Affiliations

Authors

Contributions

M.X., J.L.K. and T.T. conceived the p21-Cre mouse model. M.X. designed, generated and validated the p21-Cre mouse model. B.W., L.W., N.S.G., Y.Z., C.G., T.K. and M.X. performed the mouse studies. B.W. and E.R.J. contributed to the FACS analysis. N.S.G., B.W. and Y.Z. contributed to the histological analysis. L.H., S.Y., G.A.K. and J.L.K. contributed to manuscript preparation. M.X. wrote the manuscript with input from all coauthors. M.X. oversaw all experiments, data analysis and manuscript preparation.

Corresponding author

Correspondence to Ming Xu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Peer review information Nature Aging thanks Valery Krizhanovsky, and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 p16high and p21high cells are two distinct cell populations in aged tissues.

Uniform manifold approximation and projection (UMAP) plots showing expression levels of p21 (cdkn1a) and p16 (cdkn2a) in visceral fat, liver and heart in 18-30 months old mice. The figures were generated using the Tabula Muris Senis interactive platform (https://tabula-muris-senis.ds.czbiohub.org/).

Extended Data Fig. 2 p21 expression in tdTomato+ and tdTomato- cells in old mice.

(a) Representative images of tdTomato + and tdTomato- SVF cells in old PT mice. (b) p21 staining intensity of tdTomato + and tdTomato- SVF cells detected by flow cytometry. (c) p21 + cells percentage and p21 mean fluorescence intensity (MFI) of tdTomato + and tdTomato- SVF cells. For c, n = 3 for both groups. Results were shown as mean ± s.e.m. * p < 0.05; two-tailed, paired Student’s t-test. p = 0.009 for p21 + cells%; p = 0.028 for p21 MFI.

Source data

Extended Data Fig. 3 Tissue distribution of p21high cells.

Representative images of LUC activity in various tissues from young and old mice. r.l.u., relative luciferase units.

Extended Data Fig. 4 The activity of p21-Cre is low in cells in vitro.

(a) Flow cytometry analysis of tdTomato (T) in MEFs (P/P; T/+and P/+; T/+). Representative image of tdTomato+ cells can be only seen in P/P; T/+MEFs treated with both 4-OHT and DOXO. (b) tdTomato+ cells percentage in MEFs. For b, n = 4 for all groups. Results were shown as mean ± s.e.m. * p = 0.018; two-tailed, unpaired Student’s t-test.

Source data

Supplementary information

Source data

Source Data Fig. 1

Unprocessed gels.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 7

Statistical source data.

Source Data Fig. 7

Unprocessed gels.

Source Data Fig. 8

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Wang, L., Gasek, N.S. et al. An inducible p21-Cre mouse model to monitor and manipulate p21-highly-expressing senescent cells in vivo. Nat Aging 1, 962–973 (2021). https://doi.org/10.1038/s43587-021-00107-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43587-021-00107-6

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research