Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rational engineering of a functional CpG-free ITR for AAV gene therapy

Abstract

Inverted terminal repeats (ITRs) are the only wild-type components retained in the genome of adeno-associated virus (AAV) vectors. To determine whether ITR modification is a viable approach for AAV vector engineering, we rationally deleted all CpG motifs in the ITR and examined whether CpG elimination compromises AAV-vector production and transduction. Modified ITRs were stable in the plasmid and maintained the CpG-free nature in purified vectors. Replacing the wild-type ITR with the CpG-free ITR did not affect vector genome encapsidation. However, the vector yield was decreased by approximately 3-fold due to reduced vector genome replication. To study the biological potency, we made micro-dystrophin (μDys) AAV vectors carrying either the wild-type ITR or the CpG-free ITR. We delivered the CpG-free μDys vector to one side of the tibialis anterior muscle of dystrophin-null mdx mice and the wild-type μDys vector to the contralateral side. Evaluation at four months after injection showed no difference in the vector genome copy number, microdystrophin expression, and muscle histology and force. Our results suggest that the complete elimination of the CpG motif in the ITR does not affect the biological activity of the AAV vector. CpG-free ITRs could be useful in engineering therapeutic AAV vectors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design of the version-1 CpG-free ITR.
Fig. 2: Confirmation of the CpG-free ITR in the cis-plasmid.
Fig. 3: SMRT sequencing evaluation of the ITR sequence in the purified AAV vector.
Fig. 4: Quantitative evaluation of AAV production.
Fig. 5: Evaluation of vector-genome replication during AAV production.
Fig. 6: The CpG-free ITR optimization and the yield from the vector carrying the modified CpG-free ITR.
Fig. 7: Evaluation of microdystrophin expression.
Fig. 8: Evaluation of centronucleation and myofiber size distribution.
Fig. 9: Quantitative evaluation of the tibialis anterior muscle contractility from mdx mice that were treated with CpG-free and the wild-type μDys vectors.

Similar content being viewed by others

References

  1. Atchison RW, Casto BC, Hammon WM. Adenovirus-associated defective virus particles. Science. 1965;149:754–6.

    Article  CAS  PubMed  Google Scholar 

  2. Carter BJ. Adeno-associated virus and the development of adeno-associated virus vectors: a historical perspective. Mol Ther. 2004;10:981–9.

    Article  CAS  PubMed  Google Scholar 

  3. Flotte TR, Berns KI. Adeno-associated virus: a ubiquitous commensal of mammals. Hum Gene Ther. 2005;16:401–7.

    Article  CAS  PubMed  Google Scholar 

  4. Srivastava A, Lusby EW, Berns KI. Nucleotide sequence and organization of the adeno-associated virus 2 genome. J Virol. 1983;45:555–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Muzyczka N. Use of adeno-associated virus as a general transduction vector for mammalian cells. Curr Top Microbiol Immunol. 1992;158:97–129.

    CAS  PubMed  Google Scholar 

  6. Muzyczka N, Berns KI. AAV’s golden jubilee. Mol Ther. 2015;23:807–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hastie E, Samulski RJ. Adeno-associated virus at 50: a golden anniversary of discovery, research, and gene therapy success-a personal perspective. Hum Gene Ther. 2015;26:257–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. High KA, Roncarolo MG. Gene Therapy. N Engl J Med. 2019;381:455–64.

    Article  CAS  PubMed  Google Scholar 

  9. Wang D, Tai PWL, Gao GP. Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov. 2019;18:358–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li C, Samulski RJ. Engineering adeno-associated virus vectors for gene therapy. Nat Rev Genet. 2020;21:255–72.

    Article  CAS  PubMed  Google Scholar 

  11. Bryant LM, Christopher DM, Giles AR, Hinderer C, Rodriguez JL, Smith JB, et al. Lessons learned from the clinical development and market authorization of Glybera. Human gene therapy. Clin Dev. 2013;24:55–64.

    CAS  Google Scholar 

  12. Hoy SM. Onasemnogene abeparvovec: first global approval. Drugs. 2019;79:1255–62.

    Article  CAS  PubMed  Google Scholar 

  13. Keeler AM, Flotte TR. Recombinant adeno-associated virus gene therapy in light of Luxturna (and Zolgensma and Glybera): where are we, and how did we get here? Annu Rev Virol. 2019;6:601–21.

  14. Ciulla TA, Hussain RM, Berrocal AM, Nagiel A. Voretigene neparvovec-rzyl for Treatment of RPE65-mediated inherited retinal diseases: a model for ocular gene therapy development. Expert Opin Biol Ther. 2020;20:565–78.

  15. Wilmott P, Lisowski L, Alexander IE, Logan GJ. A user’s guide to the inverted terminal repeats of adeno-associated virus. Hum Gene Ther Methods. 2019;30:206–13.

    Article  CAS  PubMed  Google Scholar 

  16. Tai PWL. ITRs: The terminal frontier. Hum Gene Ther. 2020;31:143–4.

    Article  CAS  PubMed  Google Scholar 

  17. Duan D, Yan Z, Yue Y, Engelhardt JF. Structural analysis of adeno-associated virus transduction intermediates. Virology. 1999;261:8–14.

    Article  CAS  PubMed  Google Scholar 

  18. Kotterman MA, Schaffer DV. Engineering adeno-associated viruses for clinical gene therapy. Nat Rev Genet. 2014;15:445–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wagner HJ, Weber W, Fussenegger M. Synthetic biology: emerging concepts to design and advance adeno-associated viral vectors for gene therapy. Adv Sci. 2021;8:2004018.

  20. Lai Y, Duan D. Design of muscle gene therapy expression cassette. In: Duan D, Mendell JR, editors. Muscle Gene Therapy, Second edn. Springer Nature Switzerland; 2019.

  21. Choi JH, Yu NK, Baek GC, Bakes J, Seo D, Nam HJ, et al. Optimization of AAV expression cassettes to improve packaging capacity and transgene expression in neurons. Mol Brain. 2014;7:17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Ryan JH, Zolotukhin S, Muzyczka N. Sequence requirements for binding of Rep68 to the adeno-associated virus terminal repeats. J Virol. 1996;70:1542–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brister JR, Muzyczka N. Rep-mediated nicking of the adeno-associated virus origin requires two biochemical activities, DNA helicase activity and transesterification. J Virol. 1999;73:9325–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brister JR, Muzyczka N. Mechanism of Rep-mediated adeno-associated virus origin nicking. J Virol. 2000;74:7762–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang XS, Ponnazhagan S, Srivastava A. Rescue and replication of adeno-associated virus type 2 as well as vector DNA sequences from recombinant plasmids containing deletions in the viral inverted terminal repeats: selective encapsidation of viral genomes in progeny virions. J Virol. 1996;70:1668–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang XS, Ponnazhagan S, Srivastava A. Rescue and replication signals of the adeno-associated virus 2 genome. J Mol Biol. 1995;250:573–80.

    Article  CAS  PubMed  Google Scholar 

  27. Zhou QZ, Tian WH, Liu CG, Lian ZH, Dong XY, Wu XB. Deletion of the B-B′ and C-C′ regions of inverted terminal repeats reduces rAAV productivity but increases transgene expression. Sci Rep. 2017;7:5432.

  28. Zhou X, Zeng X, Fan Z, Li C, McCown T, Samulski RJ, et al. Adeno-associated virus of a single-polarity DNA genome is capable of transduction in vivo. Mol Ther. 2008;16:494–9.

    Article  CAS  PubMed  Google Scholar 

  29. Zhong L, Zhou X, Li Y, Qing K, Xiao X, Samulski RJ, et al. Single-polarity recombinant adeno-associated virus 2 vector-mediated transgene expression in vitro and in vivo: mechanism of transduction. Mol Ther. 2008;16:290–5.

    Article  CAS  PubMed  Google Scholar 

  30. Wang Z, Ma HI, Li J, Sun L, Zhang J, Xiao X. Rapid and highly efficient transduction by double-stranded adeno-associated virus vectors in vitro and in vivo. Gene Ther. 2003;10:2105–11.

    Article  CAS  PubMed  Google Scholar 

  31. McCarty DM, Fu H, Monahan PE, Toulson CE, Naik P, Samulski RJ. Adeno-associated virus terminal repeat (TR) mutant generates self-complementary vectors to overcome the rate-limiting step to transduction in vivo. Gene Ther. 2003;10:2112–8.

    Article  CAS  PubMed  Google Scholar 

  32. Ling C, Wang Y, Lu Y, Wang LN, Jayandharan GR, Aslanidi GV, et al. Enhanced transgene expression from recombinant single-stranded d-sequence-substituted adeno-associated virus vectors in human cell lines in vitro and in murine hepatocytes in vivo. J Virol. 2015;89:952–61.

    Article  PubMed  CAS  Google Scholar 

  33. Wang XS, Khuntirat B, Qing K, Ponnazhagan S, Kube DM, Zhou S, et al. Characterization of wild-type adeno-associated virus type 2-like particles generated during recombinant viral vector production and strategies for their elimination. J Virol. 1998;72:5472–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Weiner GJ, Liu HM, Wooldridge JE, Dahle CE, Krieg AM. Immunostimulatory oligodeoxynucleotides containing the CpG motif are effective as immune adjuvants in tumor antigen immunization. Proc Natl Acad Sci USA. 1997;94:10833–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Faust SM, Bell P, Cutler BJ, Ashley SN, Zhu Y, Rabinowitz JE, et al. CpG-depleted adeno-associated virus vectors evade immune detection. J Clin Invest. 2013;123:2994–3001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wright JF. Codon modification and PAMPs in clinical AAV vectors: the tortoise or the hare? Mol Ther. 2020;28:701–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bertolini TB, Shirley JL, Zolotukhin I, Li X, Kaisho T, Xiao W, et al. Effect of CpG depletion of vector genome on CD8(+) T cell responses in AAV gene therapy. Front Immunol. 2021;12:672449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Konkle BA, Walsh CE, Escobar MA, Josephson NC, Young G, von Drygalski A, et al. BAX 335 hemophilia B gene therapy clinical trial results: potential impact of CpG sequences on gene expression. Blood. 2021;137:763–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shin J-H, Hakim C, Zhang K, Duan D. Genotyping mdx, mdx3cv and mdx4cv mice by primer competition PCR. Muscle Nerve. 2011;43:283–6.

    Article  CAS  PubMed  Google Scholar 

  40. Lai Y, Thomas GD, Yue Y, Yang HT, Li D, Long C, et al. Dystrophins carrying spectrin-like repeats 16 and 17 anchor nNOS to the sarcolemma and enhance exercise performance in a mouse model of muscular dystrophy. J Clin Invest. 2009;119:624–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhong L, Li B, Mah CS, Govindasamy L, Agbandje-McKenna M, Cooper M, et al. Next generation of adeno-associated virus 2 vectors: point mutations in tyrosines lead to high-efficiency transduction at lower doses. Proc Natl Acad Sci USA. 2008;105:7827–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Petrs-Silva H, Dinculescu A, Li Q, Min SH, Chiodo V, Pang JJ, et al. High-efficiency transduction of the mouse retina by tyrosine-mutant AAV serotype vectors. Mol Ther. 2009;17:463–71.

    Article  CAS  PubMed  Google Scholar 

  43. Shin J-H, Yue Y, Duan D. Recombinant adeno-associated viral vector production and purification. Methods Mol Biol. 2012;798:267–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shin J-H, Pan X, Hakim CH, Yang HT, Yue Y, Zhang K, et al. Microdystrophin ameliorates muscular dystrophy in the canine model of Duchenne muscular dystrophy. Mol Ther. 2013;21:750–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tran NT, Heiner C, Weber K, Weiand M, Wilmot D, Xie J, et al. AAV-genome population sequencing of vectors packaging CRISPR components reveals design-influenced heterogeneity. Mol Ther-Meth Clin D. 2020;18:639–51.

    Article  CAS  Google Scholar 

  46. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lai Y, Yue Y, Duan D. Evidence for the failure of adeno-associated virus serotype 5 to package a viral genome > or = 8.2 kb. Mol Ther. 2010;18:75–9.

    Article  CAS  PubMed  Google Scholar 

  48. Ghosh A, Yue Y, Lai Y, Duan D. A hybrid vector system expands aden-associated viral vector packaging capacity in a transgene independent manner. Mol Ther. 2008;16:124–30.

    Article  CAS  PubMed  Google Scholar 

  49. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nature methods. 2012;9:676–82.

    Article  CAS  PubMed  Google Scholar 

  50. Hakim CH, Li D, Duan D. Monitoring murine skeletal muscle function for muscle gene therapy. Methods Mol Biol. 2011;709:75–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hakim CH, Wasala NB, Pan X, Kodippili K, Yue Y, Zhang K, et al. A five-repeat micro-dystrophin gene ameliorated dystrophic phenotype in the severe DBA/2J-mdx model of Duchenne muscular dystrophy. Molecular therapy. Meth Clin Dev. 2017;6:216–30.

    Article  CAS  Google Scholar 

  52. Hakim CH, Wasala NB, Duan D. Evaluation of muscle function of the extensor digitorum longus muscle ex vivo and tibialis anterior muscle in situ in mice. J Vis Exp. 2013;72:e50183.

    Google Scholar 

  53. Mendez J, Keys A. Density and composition of mammalian muscle. Metabolism. 1960;9:184–8.

    CAS  Google Scholar 

  54. Burkholder TJ, Fingado B, Baron S, Lieber RL. Relationship between muscle fiber types and sizes and muscle architectural properties in the mouse hindlimb. J Morphol. 1994;221:177–90.

    Article  CAS  PubMed  Google Scholar 

  55. Berns KI. The unusual properties of the AAV inverted terminal repeat. Hum Gene Ther. 2020;31:518–23.

  56. Krieg AM. CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol. 2002;20:709–60.

    Article  CAS  PubMed  Google Scholar 

  57. Ishii KJ, Akira S. Innate immune recognition of, and regulation by, DNA. Trends Immunol. 2006;27:525–32.

    Article  CAS  PubMed  Google Scholar 

  58. Muramatsu S, Mizukami H, Young NS, Brown KE. Nucleotide sequencing and generation of an infectious clone of adeno-associated virus 3. Virology. 1996;221:208–17.

    Article  CAS  PubMed  Google Scholar 

  59. Chiorini JA, Yang L, Liu Y, Safer B, Kotin RM. Cloning of adeno-associated virus type 4 (AAV4) and generation of recombinant AAV4 particles. J Virol. 1997;71:6823–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Amiss TJ, McCarty DM, Skulimowski A, Samulski RJ. Identification and characterization of an adeno-associated virus integration site in CV-1 cells from the African green monkey. J Virol. 2003;77:1904–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Im DS, Muzyczka N. Factors that bind to adeno-associated virus terminal repeats. J Virol. 1989;63:3095–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ashktorab H, Srivastava A. Identification of nuclear proteins that specifically interact with adeno-associated virus type 2 inverted terminal repeat hairpin DNA. J Virol. 1989;63:3034–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Earley LF, Conatser LM, Lue VM, Dobbins AL, Li C, Hirsch ML, et al. Adeno-associated virus serotype-specific inverted terminal repeat sequence role in vector transgene expression. Hum Gene Ther. 2020;31:151–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Grimm D, Pandey K, Nakai H, Storm TA, Kay MA. Liver transduction with recombinant adeno-associated virus is primarily restricted by capsid serotype not vector genotype. J Virol. 2006;80:426–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Piovesan A, Pelleri MC, Antonaros F, Strippoli P, Caracausi M, Vitale L. On the length, weight and GC content of the human genome. BMC Res Notes. 2019;12:106.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Duan D, Goemans N, Takeda S, Mercuri E, Aartsma-Rus A. Duchenne muscular dystrophy. Nat Rev Dis Primers. 2021;7:13.

    Article  PubMed  Google Scholar 

  67. Samulski RJ, Muzyczka N. AAV-mediated gene therapy for research and therapeutic purposes. Annu Rev Virol. 2014;1:427–51.

    Article  PubMed  CAS  Google Scholar 

  68. Ling C, Wang Y, Lu Y, Wang L, Jayandharan GR, Aslanidi GV, et al. The adeno-associated virus genome packaging puzzle. J Mol Genet Med. 2015;9:175.

  69. Timpe J, Bevington J, Casper J, Dignam JD, Trempe JP. Mechanisms of adeno-associated virus genome encapsidation. Curr Gene Ther. 2005;5:273–84.

    Article  CAS  PubMed  Google Scholar 

  70. Bennett A, Mietzsch M, Agbandje-McKenna M. Understanding capsid assembly and genome packaging for adeno-associated viruses. Fut Virol. 2017;12:283–97.

    Article  CAS  Google Scholar 

  71. King JA, Dubielzig R, Grimm D, Kleinschmidt JA. DNA helicase-mediated packaging of adeno-associated virus type 2 genomes into preformed capsids. Embo J. 2001;20:3282–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Savy A, Dickx Y, Nauwynck L, Bonnin D, Merten OW, Galibert L. Impact of inverted terminal repeat integrity on rAAV8 production using the Baculovirus/Sf9 cells system. Hum Gene Ther Meth. 2017;28:277–89.

    Article  CAS  Google Scholar 

  73. Duan D, Sharma P, Yang J, Yue Y, Dudus L, Zhang Y, et al. Circular intermediates of recombinant adeno-associated virus have defined structural characteristics responsible for long term episomal persistence in muscle. J. Virol. 1998;72:8568–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Duan D, Sharma P, Dudus L, Zhang Y, Sanlioglu S, Yan Z, et al. Formation of adeno-associated virus circular genomes is differentially regulated by adenovirus E4 ORF6 and E2a gene expression. J Virol. 1999;73:161–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yan Z, Zak R, Zhang Y, Engelhardt JF. Inverted terminal repeat sequences are important for intermolecular recombination and circularization of adeno-associated virus genomes. J Virol. 2005;79:364–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Samulski RJ, Chang LS, Shenk T. A recombinant plasmid from which an infectious adeno-associated virus genome can be excised in vitro and its use to study viral replication. J Virol. 1987;61:3096–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tai PWL, Xie J, Fong K, Seetin M, Heiner C, Su Q, et al. Adeno-associated virus genome population sequencing achieves full vector genome resolution and reveals human-vector chimeras. Molecular therapy. Meth Clin Dev. 2018;9:130–41.

    Article  CAS  Google Scholar 

  78. Xiao W, Chirmule N, Berta SC, McCullough B, Gao G, Wilson JM. Gene therapy vectors based on adeno-associated virus type 1. J Virol. 1999;73:3994–4003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lusby E, Fife KH, Berns KI. Nucleotide sequence of the inverted terminal repetition in adeno- associated virus DNA. J Virol. 1980;34:402–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rutledge EA, Halbert CL, Russell DW. Infectious clones and vectors derived from adeno-associated virus (AAV) serotypes other than AAV type 2. J Virol. 1998;72:309–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chiorini JA, Kim F, Yang L, Kotin RM. Cloning and characterization of adeno-associated virus type 5. J Virol. 1999;73:1309–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Estevez C, Villegas P. Sequence analysis, viral rescue from infectious clones and generation of recombinant virions of the avian adeno-associated virus. Virus Res. 2004;105:195–208.

    Article  CAS  PubMed  Google Scholar 

  83. Bossis I, Chiorini JA. Cloning of an avian adeno-associated virus (AAAV) and generation of recombinant AAAV particles. J Virol. 2003;77:6799–810.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Schmidt M, Katano H, Bossis I, Chiorini JA. Cloning and characterization of a bovine adeno-associated virus. J Virol. 2004;78:6509–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Grimm D, Kay MA, Kleinschmidt JA. Helper virus-free, optically controllable, and two-plasmid-based production of adeno-associated virus vectors of serotypes 1 to 6. Mol Ther. 2003;7:839–50.

    Article  CAS  PubMed  Google Scholar 

  86. Halbert CL, Allen JM, Miller AD. Adeno-associated virus type 6 (aav6) vectors mediate efficient transduction of airway epithelial cells in mouse lungs compared to that of aav2 vectors. J Virol. 2001;75:6615–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chejanovsky N, Carter BJ. Mutagenesis of an AUG codon in the adeno-associated virus rep gene: effects on viral DNA replication. Virology. 1989;173:120–8.

    Article  CAS  PubMed  Google Scholar 

  88. Yew NS, Cheng SH. Reducing the immunostimulatory activity of CpG-containing plasmid DNA vectors for non-viral gene therapy. Expert Opinion Drug Deliv. 2004;1:115–25.

    Article  CAS  Google Scholar 

  89. Hyde SC, Pringle IA, Abdullah S, Lawton AE, Davies LA, Varathalingam A, et al. CpG-free plasmids confer reduced inflammation and sustained pulmonary gene expression. Nat Biotechnol. 2008;26:549–51.

    Article  CAS  PubMed  Google Scholar 

  90. Duan D, Systemic AAV. Micro-dystrophin gene therapy for duchenne muscular dystrophy. Mol Ther. 2018;26:2337–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from National Institutes of Health (NS-90634 and AR-70517 to DD, AI-116595 to DJP), Department of Defense (MD130014 to DD), Jesse’s Journey—The Foundation for Gene and Cell Therapy (to DD), and Jackson Freel DMD Research Fund (to DD). The authors thank Dr. Arun Srivastava (University of Florida) for providing the AAV9 tyrosine mutant Rep–Cap packaging plasmid and Dr. Glenn Morris (The Rober Jones and Agnes Hunt Orthopedic Hospital, UK) for providing the MANNEX 44 A antidystrophin antibody. The authors thank Duan lab members for helpful discussion. The authors thank Lisa Burger for expert technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed experiments: XP and DD. Performed the experiments: XP, YY, MB, LPW, NTT, KZ, and PWLT. Analyzed the data: XW, YY, MB, LPW, DJP, PWLT, and DD. Wrote the paper: XP and DD. All authors edited the paper and approved submission.

Corresponding author

Correspondence to Dongsheng Duan.

Ethics declarations

Competing interests

DD is a member of the scientific advisory board for Solid Biosciences and equity holders of Solid Biosciences. DD and YY are inventors on patents that were licensed to Solid Biosciences. The Duan lab has received research support (unrelated to this project) from Solid Biosciences and Edgewise Therapeutics in the last three years.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, X., Yue, Y., Boftsi, M. et al. Rational engineering of a functional CpG-free ITR for AAV gene therapy. Gene Ther 29, 333–345 (2022). https://doi.org/10.1038/s41434-021-00296-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-021-00296-0

This article is cited by

Search

Quick links