Skip to main content

Scientists find a surprising way to create concrete for Mars buildings

If Elon Musk really wants to build an outpost on Mars for humans to live and work, visiting astronauts may have to literally give their blood, sweat, and tears — and even urine — to make it happen.

Transporting construction materials all the way to the red planet would cost be extremely costly and impractical, but scientists at the University of Manchester in England believe they may have found a workaround.

In the results of a study published recently in Materials Today Bio, the scientists discovered that by mixing a common blood plasma protein called human serum albumin with the urea waste product excreted in urine, sweat, and tears, and then blending it with simulated moon or Mars material, they were able to create a substance even stronger than concrete.

The team of scientists has called its invention AstroCrete, and believes the method could be an important step toward future Mars exploration that could see humans living and working on the faraway planet.

Dr. Aled Roberts, who was part of the University of Manchester team that worked on the research, told the university’s EurekaAlert publication that the new technique appears to offer improvements over earlier ideas for constructing buildings in environments far from Earth.

“Scientists have been trying to develop viable technologies to produce concrete-like materials on the surface of Mars, but we never stopped to think that the answer might be inside us all along,” Roberts said. Noting how blood from animals was once used to bind mortar, he added: “It’s exciting that a major challenge of the space age may have found its solution based on inspirations from medieval technology.”

The scientists said that during a two-year Mars mission, a crew of six astronauts would be able to produce more than half a ton of AstroCrete that could be used for sandbags or regolith bricks.

NASA is eyeing the 2030s for the first crewed mission to Mars, but that would be a relatively short trip to test a plethora of systems, including the transportation for getting astronauts safely back from such a distant location.

In other words, it could be some time before we see any astronauts passing water into a space-based cement mixer to build a shelter, but the University of Manchester scientists’ research is certainly a fascinating breakthrough that could well transform the thinking behind how to create our first construction site on another planet.

Editors' Recommendations

Trevor Mogg
Contributing Editor
Not so many moons ago, Trevor moved from one tea-loving island nation that drives on the left (Britain) to another (Japan)…
The Curiosity rover reaches a milestone on Mars
Curiosity Rover

NASA's Curiosity rover, which is currently exploring Mars' Gale Crater, recently marked an impressive milestone: 4,000 days on Mars. The rover landed more than a decade ago on August 5, 2012, and since then it has continued to explore the area, collect rock samples, and make its way up the epic slopes of Mount Sharp.

The 4,000 days are measured in mission time, which is calculated in martian days or sols. Due to the differing rates of rotation of Earth and Mars, a day on Mars is slightly longer than a day on Earth, by about 40 minutes. And also, due to the difference distances between Earth and Mars and the sun, a martian year is longer too - at 668 sols, equivalent to 687 Earth days. Those working on Mars rover missions, especially the rover drivers, have to operate on Mars time, so their schedules are out of sync with typical Earth working hours and they generally work on 90-sol shifts to allow them time to readjust to Earth schedules.

Read more
Map of Mars shows the location of ice beneath the planet’s surface
In this artist’s concept, NASA astronauts drill into the Martian subsurface. The agency has created new maps that show where ice is most likely to be easily accessible to future astronauts.

One of the challenges of sending human explorers to Mars is that, due to the logistics of the journey, they will have to be on the planet's surface for considerably longer than the missions of a few days which have been sent to the moon in the past. That means future explorers will need access to resources like food, water, and oxygen -- and rather than having to carry months' worth of supplies through space, it's far more efficient to find ways to produce those resources on Mars itself.

That's the idea behind searching for water ice deposits on Mars. There's plenty of ice on the surface around the planet's poles, but most mission concepts are more focused on the planet's equatorial region. The good news is that there is ice present in these areas too, but the bad news is that it's primarily located below the surface and is thus hard to locate.

Read more
Mars flyover video shows a stunning network of valleys
mars flyover video shows a stunning network of valleys esa

The European Space Agency (ESA) has released a gorgeous video visualizing part of Mars’ Noctis Labyrinthus, a vast system of deep valleys that stretches for around 740 miles (1,190 kilometers), or for context, roughly equal to the length of Italy.

The flyover, which uses imagery gathered from eight orbits made by ESA’s Mars Express spacecraft and its High Resolution Stereo Camera (HSRC), shows a landscape dramatically different to other parts of Mars such as the much flatter Jezero Crater, which NASA's Perseverance rover is currently exploring for signs of ancient microbial life.

Read more