CreatorsPublishersAdvertisers

#Motor Cortex

parkinsonsnewstoday.com

Reduced Dopamine Shown to Impact Activity in Brain Motor Cortex

Reduced dopamine signaling leads to abnormal activity in the motor cortex— the part of the brain chiefly responsible for controlling movement — a new study in mice illustrates. This result helps to shed light on the biological underpinnings of Parkinson’s disease, which is characterized by abnormally low dopamine levels and...
SCIENCE
Nature.com

Improving online and offline gain from repetitive practice using anodal tDCS at dorsal premotor cortex

Administering anodal transcranial direct current stimulation at the left dorsal premotor cortex (PMd) but not right PMd throughout the repetitive practice of three novel motor sequences resulted in improved offline performance usually only observed after interleaved practice. This gain only emerged following overnight sleep. These data are consistent with the proposed proprietary role of left PMd for motor sequence learning and the more recent claim that PMd is central to sleep-related consolidation of novel skill memory.
TECHNOLOGY
Picture for Improving online and offline gain from repetitive practice using anodal tDCS at dorsal premotor cortex
alsnewstoday.com

Cell Atlas of Motor Cortex, Brain Region That Controls Movement, Created

A detailed atlas of the various types of cells that populate the motor cortex, the brain region that controls voluntary movement and is damaged in people with amyotrophic lateral sclerosis (ALS), was created by a worldwide consortium of researchers. The long-term goal of the group,…
HEALTH
Picture for Cell Atlas of Motor Cortex, Brain Region That Controls Movement, Created
TRENDING TOPICS
Newswise

Study Reveals Motor Cortex Could Have Larger Role in Parkinson’s Disease

Newswise — STONY BROOK, NY, October 18, 2021– The role of neuron and dopamine loss in Parkinson’s Disease (PD) has long been recognized by neuroscientists. However, how dopaminergic modulation affects brain regions involved in the control of voluntary movement remains a subject of investigation. Researchers in the Department of Neurobiology and Behavior in the College of Arts and Sciences and the Renaissance School of Medicine at Stony Brook University, used an experimental model to demonstrate that a loss of midbrain dopaminergic centers impairs the ability of the primary motor cortex neurons to transform inputs into appropriate output. The finding, published in eNeuro, supports a new line of research regarding the origins of changes in the motor cortex and its role during PD.
STONY BROOK, NY
News-Medical.net

Brain's motor cortex may play a larger role in Parkinson’s disease, study reveals

The role of neuron and dopamine loss in Parkinson's Disease (PD) has long been recognized by neuroscientists. However, how dopaminergic modulation affects brain regions involved in the control of voluntary movement remains a subject of investigation. Researchers in the Department of Neurobiology and Behavior in the College of Arts and Sciences and the Renaissance School of Medicine at Stony Brook University, used an experimental model to demonstrate that a loss of midbrain dopaminergic centers impairs the ability of the primary motor cortex neurons to transform inputs into appropriate output. The finding, published in eNeuro, supports a new line of research regarding the origins of changes in the motor cortex and its role during PD.
HEALTH
Nature.com

Modulation of neural activity in frontopolar cortex drives reward-based motor learning

The frontopolar cortex (FPC) contributes to tracking the reward of alternative choices during decision making, as well as their reliability. Whether this FPC function extends to reward gradients associated with continuous movements during motor learning remains unknown. We used anodal transcranial direct current stimulation (tDCS) over the right FPC to investigate its role in reward-based motor learning. Nineteen healthy human participants practiced novel sequences of finger movements on a digital piano with corresponding auditory feedback. Their aim was to use trialwise reward feedback to discover a hidden performance goal along a continuous dimension: timing. We additionally modulated the contralateral motor cortex (left M1) activity, and included a control sham stimulation. Right FPC-tDCS led to faster learning compared to lM1-tDCS and sham through regulation of motor variability. Bayesian computational modelling revealed that in all stimulation protocols, an increase in the trialwise expectation of reward was followed by greater exploitation, as shown previously. Yet, this association was weaker in lM1-tDCS suggesting a less efficient learning strategy. The effects of frontopolar stimulation were dissociated from those induced by lM1-tDCS and sham, as motor exploration was more sensitive to inferred changes in the reward tendency (volatility). The findings suggest that rFPC-tDCS increases the sensitivity of motor exploration to updates in reward volatility, accelerating reward-based motor learning.
SCIENCE
jneurosci.org

Motor Cortex Causally Contributes to Vocabulary Translation following Sensorimotor-Enriched Training

The role of the motor cortex in perceptual and cognitive functions is highly controversial. Here, we investigated the hypothesis that the motor cortex can be instrumental for translating foreign language vocabulary. Human participants of both sexes were trained on foreign language (L2) words and their native language translations over 4 consecutive days. L2 words were accompanied by complementary gestures (sensorimotor enrichment) or pictures (sensory enrichment). Following training, participants translated the auditorily presented L2 words that they had learned. During translation, repetitive transcranial magnetic stimulation was applied bilaterally to a site within the primary motor cortex (Brodmann area 4) located in the vicinity of the arm functional compartment. Responses within the stimulated motor region have previously been found to correlate with behavioral benefits of sensorimotor-enriched L2 vocabulary learning. Compared to sham stimulation, effective perturbation by repetitive transcranial magnetic stimulation slowed down the translation of sensorimotor-enriched L2 words, but not sensory-enriched L2 words. This finding suggests that sensorimotor-enriched training induced changes in L2 representations within the motor cortex, which in turn facilitated the translation of L2 words. The motor cortex may play a causal role in precipitating sensorimotor-based learning benefits, and may directly aid in remembering the native language translations of foreign language words following sensorimotor-enriched training. These findings support multisensory theories of learning while challenging reactivation-based theories.
SCIENCE
theness.com

Map of the Primary Motor Cortex Published

By now, especially if you are a regular reader here, you have probably heard of the connectome project, an attempt to entirely map the cells and connections of the human brain. This goal is actually comprised of multiple initiatives, one of which is the Brain Research Through Advancing Innovative Neurotechnologies (BRAIN) funded by the NIH. They have now published in Nature their first major result – a map of the mammalian primary motor cortex (technically a “multimodal cell census and atlas of the mammalian primary motor cortex”).
SCIENCE
Nature.com

A census of cell types in the brain’s motor cortex

An atlas of the cell types found in the motor cortex of the brain has been built using various types of data. Two neuroscientists explain the technological feats involved in the project, as well as the utility of the resource for future research. Johan Winnubst 0 &. Johan Winnubst is...
SCIENCE
simonsfoundation.org

Single-neuron-resolution population dynamics in human Broca’s area and motor cortex when preparing and producing speech

Speech is a highly sophisticated, uniquely human behavior. It represents one of our fastest and most coordinated motor behaviors and connects intimately to higher-order cognitive capabilities of translating one’s mental state into sequences meant to influence another’s. Our groups have recently made headway in understanding the computations through neural ensemble dynamics underlying speech by piggybacking this scientific endeavor on top of an ongoing clinical trial studying brain-computer interfaces (BCIs) as a means to restore lost communication in people with paralysis. Here we propose extending this strategy to study how population activity (>100 neurons) in the ventral precentral gyrus (vPCG, i.e., speech motor cortex) and the pars opercularis portion of the inferior frontal gyrus (IFG, which encompasses Broca’s area) prepares and produces speech. We further propose complementing this high-resolution, narrow-windows ensemble single-unit-resolution study in two chronically implanted BCI participants with short-term medium-resolution, wide-coverage local field potential recordings across the wider speech and language network of multiple participants who are undergoing stereoelectroencephalography (sEEG) recordings, and with high-resolution, scattered-coverage recordings via sEEG wire tips and potentially with Neuropixels recordings during deep brain stimulation placement procedures.
SCIENCE
YOU MAY ALSO LIKE