Robust and tunable Weyl phases by coherent infrared phonons in ZrTe

Ultrafast control of structural and electronic properties of various quantum materials has recently sparked great interest. In particular, photoinduced switching between distinct topological phases has been considered a promising route to realize quantum computers. Here we use first-principles and effective Hamiltonian methods to show that in ZrTe5, lattice distortions corresponding to all three types of zone-center infrared optical phonon modes can drive the system from a topological insulator to a Weyl semimetal. Thus achieved Weyl phases are robust, highly tunable, and one of the cleanest due to the proximity of the Weyl points to the Fermi level and a lack of other carriers. We also find that Berry curvature dipole moment, induced by the dynamical inversion symmetry breaking, gives rise to various nonlinear effects that oscillate with the amplitude of the phonon modes. These nonlinear effects present an ultrafast switch for controlling the Weyltronics-enabled quantum system.
Picture for Robust and tunable Weyl phases by coherent infrared phonons in ZrTe

Weyl fermions promote collective magnetism

The polar magnetic semimetal NdAlSi hosts Weyl fermions that promote helical magnetism, and defines a roadmap for future work on correlated topological matter. Relativistic fermions, that is, charge-carrying excitations in solids that may be accelerated at exceedingly low energy cost, are central to the current push for advanced materials with optical, electronic and spintronic functionalities. These fermions are characterized by strong spin"“momentum locking, where the fermion's direction of motion is tied to the orientation of its quantum-mechanical spin. Phenomena resulting from such entanglement of momentum and spin have been studied extensively in topological insulators and topological Weyl semimetals over the past decade or so1.
Picture for Weyl fermions promote collective magnetism

Weyl-mediated helical magnetism in NdAlSi

Emergent relativistic quasiparticles in Weyl semimetals are the source of exotic electronic properties such as surface Fermi arcs, the anomalous Hall effect and negative magnetoresistance, all observed in real materials. Whereas these phenomena highlight the effect of Weyl fermions on the electronic transport properties, less is known about what collective phenomena they may support. Here, we report a Weyl semimetal, NdAlSi, that offers an example. Using neutron diffraction, we found a long-wavelength helical magnetic order in NdAlSi, the periodicity of which is linked to the nesting vector between two topologically non-trivial Fermi pockets, which we characterize using density functional theory and quantum oscillation measurements. We further show the chiral transverse component of the spin structure is promoted by bond-oriented Dzyaloshinskii–Moriya interactions associated with Weyl exchange processes. Our work provides a rare example of Weyl fermions driving collective magnetism.

Asymmetrical plasmonic absorber and reflector based on tilted Weyl semimetals

We investigate the surface plasmon polariton dispersion and optical spectra of a thin film of tilted Weyl semimetal. Tilted Weyl semimetals possess tilted Weyl cones at the Weyl nodes and are categorized to type-I with closed Fermi surfaces and type-II with overtilted Weyl cones and open Fermi surfaces. We find that the surface plasmon polariton dispersion of this system is nonreciprocal even in the absence of the external magnetic field. Moreover, we demonstrate that the tilt parameter has a profound effect in controlling this nonreciprocity. We reveal that the thin film of type-II Weyl semimetal hosts the surface plasmon polariton modes with the negative group velocity. Furthermore, we show that the angular optical spectra of this structure are highly asymmetric and this angular asymmetry in the absorptivity and reflectivity depends profoundly on the tilt parameter of the tilted Weyl semimetal. These exciting features propose employing the tilted Weyl semimetals in optical sensing devices, optical data storage, and devices for quantum information processing.

Thermal chiral anomaly in the magnetic-field-induced ideal Weyl phase of BiSb

The chiral anomaly is the predicted breakdown of chiral symmetry in a Weyl semimetal with monopoles of opposite chirality when an electric field is applied parallel to a magnetic field. It occurs because of charge pumping between monopoles of opposite chirality. Experimental observation of this fundamental effect is plagued by concerns about the current pathways. Here we demonstrate the thermal chiral anomaly, energy pumping between monopoles, in topological insulator bismuth–antimony alloys driven into an ideal Weyl semimetal state by a Zeeman field, with the chemical potential pinned at the Weyl points and in the absence of any trivial Fermi surface pockets. The experimental signature is a large enhancement of the thermal conductivity in an applied magnetic field parallel to the thermal gradient. This work demonstrates both pumping of energy and charge between the two Weyl points of opposite chirality and that they are related by the Wiedemann–Franz law.

Manipulating Weyl quasiparticles by orbital-selective photoexcitation in WTe

Optical control of structural and electronic properties of Weyl semimetals allows development of switchable and dissipationless topological devices at the ultrafast scale. An unexpected orbital-selective photoexcitation in type-II Weyl material WTe2 is reported under linearly polarized light (LPL), inducing striking transitions among several topologically-distinct phases mediated by effective electron-phonon couplings. The symmetry features of atomic orbitals comprising the Weyl bands result in asymmetric electronic transitions near the Weyl points, and in turn a switchable interlayer shear motion with respect to linear light polarization, when a near-infrared laser pulse is applied. Consequently, not only annihilation of Weyl quasiparticle pairs, but also increasing separation of Weyl points can be achieved, complementing existing experimental observations. In this work, we provide a new perspective on manipulating the Weyl node singularity and coherent control of electron and lattice quantum dynamics simultaneously.